![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Houghton MI (SPX) Sep 05, 2018
At the end of one of the hottest summers on record, as fights about how to power homes rage, renewable solar energy continues to present an option that does not significantly add greenhouse gases to the environment in exchange for lighting and cooling our homes. And it's just been given another edge through material science. In a new study published in Energies, researchers have found a way to reduce production costs of solar cells by more than 10 percent. "Improving cost per unit power at the cell level can have massive effects downstream," says Joshua Pearce, professor of material sciences and electrical engineering at Michigan Tech. Already, he says, costs of solar energy are comparable to conventional forms of electricity and is the fastest growing energy source. This 10 percent drop should push solar to the forefront even faster. Silicon is the standard light-capturing material used in solar photovoltaic (PV) cells. It comes in two main forms: perfect crystals that cost more and produce higher efficiencies and multicrystalline silicon that cost less, but offers lower efficiencies. With common etching to reduce reflected light both types still lose some light, which is what gives most solar panels their blue color. Researchers already knew that nano-texturing silicon with dry etching makes black silicon (black-Si) that is more efficient at capturing light than standard etching treatments. It has no color because the dry etching process takes a normally flat silicon surface and "etches it into a forest of nanoscale needles," Pearce says. "Those needles grab the light and don't let it get away. It's like looking into the eyes of Darth Vader." Normally such a high surface area with many surface defects would hurt electrical performance, but researchers at Aalto University found that when the silicon is also treated with an appropriate atomic layer deposition (ALD) coating, the effects of surface defects are mitigated. Typical thinking has been that the cost of black-Si cells from dry etching and ALD are too expensive for practical use, especially in an industry where, Pearce says, "margins are extremely tight. Everyone's trying to push costs as low as possible." However, the results of their study shocked even Pearce. While researchers did find that production of individual black-Si passive emitter rear cells (PERC) were between 15.8 and 25.1 percent more expensive than making conventional cells, they also found that the efficiency gains and the ability to go to the less-expensive multicrystalline silicon starting material far outweighed those extra costs: overall the cost per unit power dropped by 10.8 percent.
The Future of Renewables and Solar Energy Production through Material Science "For the people that think coal technology is going to be able to compete with solar, they should know solar costs are still coming down. Most coal companies are already, or near, bankrupt now," Pearce says. "There's no way coal's going to be able to compete with solar in the future." He adds, "This study points to where the future is going to go in PV manufacturing and what countries might want to do to give themselves a competitive advantage."
Teaming Up Across the Atlantic for Solar Energy Efficiency While the spot price for solar cells may change day by day - or even by hour - the results still hold. "That's 10 percent decline between cell types from whatever the number is that day," he says. This is because the comparisons were made on relative costs, not absolute costs. That's also why arbitrarily fluctuating tariffs were not factored into the calculations.
What's Next for Solar Energy and Renewables The European Union, which currently makes a lot of the manufacturing equipment, should also "look carefully at scaling up deep reactive ion etching and ALD tools to meet the needs of the rapidly expanding PV market". He hopes that countries like the U.S., which used to dominate the solar field, will use this data at a policy level to leap frog international manufacturers, and invest in producing the new machines to manufacture these types of solar cells. "I don't know which technology will end up being the one to dominate the solar field," he said, however "The study shows the clear economic impetus to move in the direction of dry-etched black silicon PERC that wasn't there before."
![]() ![]() Boron nitride separation process could facilitate higher efficiency solar cells Atlanta GA (SPX) Aug 31, 2018 A team of semiconductor researchers based in France has used a boron nitride separation layer to grow indium gallium nitride (InGaN) solar cells that were then lifted off their original sapphire substrate and placed onto a glass substrate. By combining the InGaN cells with photovoltaic (PV) cells made from materials such as silicon or gallium arsenide, the new lift-off technique could facilitate fabrication of higher efficiency hybrid PV devices able to capture a broader spectrum of light. Such hy ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |