Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
Chemical Fingerprints of Ancient Supernovae Found
by Staff Writers
Washington DC (SPX) Mar 26, 2015


The Sculptor dwarf galaxy composed from data from the Digitized Sky Survey 2, courtesy of ESO/Digitized Sky Survey 2. For a larger version of this image please go here.

A Carnegie-based search of nearby galaxies for their oldest stars has uncovered two stars in the Sculptor dwarf galaxy that were born shortly after the galaxy formed, approximately 13 billion years ago. The unusual chemical content of the stars may have originated in a single supernova explosion from the first generation of Sculptor stars.

The Sculptor dwarf is a small galaxy that orbits around our own Milky Way, just as the Moon orbits around the Earth. Large galaxies like the Milky Way can contain several hundred billion stars, but Sculptor is home to just a few million. Because Sculptor's stars are all located the same distance away from us, their ages can be determined by studying the pattern of their colors and brightnesses.

This technique tells astronomers that Sculptor, like many dwarf galaxies, stopped evolving long ago. While the Milky Way has been forming stars throughout the universe's 14 billion year existence, Sculptor's youngest stars are 7 billion years old. Dwarf galaxies thus provide scientists an opportunity to see what galaxies looked like in the early epochs of the universe.

Stars in all galaxies are born out of collapsing clouds of dust and gas. Only a few million years after they begin burning, the most-massive of these stars explode in titanic blasts called supernovae. These explosions seed the surrounding gas with the elements that were manufactured by the stars during their lifetimes.

Those elements are then incorporated into the formation of the next generation of stars. Generally this process is cyclical, with each generation of stars contributing more elements to the raw material from which the next set of stars will be formed.

Astronomers hoping to learn about the first stages of galaxy formation after the Big Bang can use the chemical composition of stars to help them unravel the histories of our own and nearby galaxies. Elements heavier than hydrogen, helium, and lithium can only be produced by stars. The more stars a galaxy forms, the more enriched in heavy elements it becomes.

Thus, young stars contain larger amounts of heavy elements produced by dozens or hundreds of supernovae, while the oldest stars have a very simple chemical makeup with few of the heavy elements. Typically, stars are characterized by how much iron they contain, because iron is a relatively common element and is almost always the easiest for astronomers to detect.

The team - also including Heather Jacobson and Anna Frebel of the Massachusetts Institute of Technology, as well as former Carnegie postdoc Josh Adams - studied five stars in Sculptor, measuring the abundance of 15 elements in each one. The two most-primitive stars have less than half as much magnesium and calcium as would be expected based on their iron content and just 10 percent as much silicon as similar stars in other galaxies.

"The only way to explain the shortage of magnesium, calcium, and silicon in these stars is if their heavy elements were made by fewer than four supernovae, and those supernovae need to have been a rare kind of explosion," explained Simon.

The astronomers concluded that these two primitive stars were probably formed from a gas cloud that had been seeded with heavy elements made by just one previously exploded star. This parent star is thought to be one of the very first stars ever formed in Sculptor.

"Most likely, we are seeing the leftover traces of just a single supernova," added Jacobson.

"These stars are giving us an unprecedented view of the earliest history of another galaxy," Frebel said.

The team, which includes Carnegie's Josh Simon, Ian Thompson, and Stephen Shectman, will publish their work in The Astrophysical Journal


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Institution for Science
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Satellites Catch 'Growth Spurt' from Newborn Protostar
Pasadena CA (JPL) Mar 26, 2015
Using data from orbiting observatories, including NASA's Spitzer Space Telescope, and ground-based facilities, an international team of astronomers has discovered an outburst from a star thought to be in the earliest phase of its development. The eruption, scientists say, reveals a sudden accumulation of gas and dust by an exceptionally young protostar known as HOPS 383. Stars form within ... read more


STELLAR CHEMISTRY
Weltec Biopower Builds 500-kW Biogas Plant for Vegetable Producer

Chinese airline completes cooking oil fuel flight

Supercomputers help solve puzzle-like bond for biofuels

Scientists engineer faster-growing trees ideal for biofuel

STELLAR CHEMISTRY
Robot finds bodily posture may affect memory and learning

Snake robots learn to turn by following the lead of real sidewinders

USAF funds sense-and-avoid technology development

Robotic materials: Changing with the world around them

STELLAR CHEMISTRY
U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

Wind energy: TUV Rheinland supervises Senvion sale

STELLAR CHEMISTRY
Uber ramps up safety efforts after criticism

Pirelli boss attacks 'nationalist' China deal critics

Chinese takeover of Pirelli met with resignation in Italy

Hidden benefits of electric vehicles revealed

STELLAR CHEMISTRY
New technology converts packing peanuts to battery components

Superconductivity breakthroughs

You can't play checkers with charge ordering

Researchers increase energy density of lithium storage materials

STELLAR CHEMISTRY
NE China nuclear plant generator operational

Hungary reaches EU deal on nuclear fuel from Russia

Jordan agrees deal for Russia to build nuclear plant

Nearly all fuel inside Fukushima reactor melted: TEPCO

STELLAR CHEMISTRY
Energy company Eneco is heating homes with computer servers

Polish Power Exchange hosts 18th AFM Annual Conference

Reducing emissions with a more effective carbon capture method

China to further streamline energy layout amid "new normal"

STELLAR CHEMISTRY
Forests for water in eastern Amazonia

Amazon's carbon uptake declines as trees die faster

Study: Only two intact forests left on Earth

Conifers' helicoptering seeds are result of long evolutionary experiment




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.