Solar Energy News  
TIME AND SPACE
Chinese scientists realize quantum simulation of the Unruh effect
by Staff Writers
Beijing, China (SPX) Mar 21, 2016


(a) The NMR quantum simulator consists of 13C, 1H and 19F nuclear spins in chloroform; (b) The experimental pulse sequence for simulating the Unruh effect. Image courtesy Science China Press. For a larger version of this image please go here.

Quantum mechanics and relativity theory are two pillars of modern physics. With their amalgamation, many novel phenomena have been identified. For example, the Unruh effect is one of the most significant outcomes of the quantum field theory.

This effect serves as an important tool to investigate phenomena such as thermal emission of particles from black holes and cosmological horizons. It has been 40 years since the discovery of the Unruh effect, however, this effect is too weak to be observed with current technique.

There have been a lot of attempts in searching for the observational evidence of the Unruh effect and in general the experimental observation is still of great challenge. To address this issue, quantum simulators may provide a promising approach.

Quantum simulation is widely applied for simulating the quantum systems which cannot be efficiently simulated by classical computers or are not directly tractable by the current techniques in the laboratory.

The researchers, led by Prof. Jiangfeng Du from University of Science and Technology of China, reported an experimental simulation of the Unruh effect with an NMR quantum simulator.

The experiments were performed on a Bruker Avance III 400MHz spectrometer. The researchers used a sample of 13C, 1H and 19F nuclear spins in chloroform as the NMR quantum simulator.

The simulated Unruh effect on the quantum states can be realized by the pulse sequence acting on the sample, as depicted in Figure 1(b). By the quantum simulator, they experimentally demonstrated the behavior of Unruh temperature with acceleration, which agrees nicely with the theoretical prediction.

Furthermore, they investigated the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown for the first time that the quantum correlations can be created by the Unruh effect from the classically correlated states. This work was recently published in the Science China-Physics, Mechanics and Astronomy.

It is interesting that the Unruh effect was in Feynman's blackboard as one of the issues to learn at the time of his death in 1988, while it was also Feynman who conceived the idea of quantum simulation in 1982.

This quantum simulation of the Unruh effect will provide a promising window to explore the quantum physics of accelerated systems, which widely appear in black hole physics, cosmology and particle physics.

This research was funded by the National Key Basic Research Program of China (Grant Nos. 2013CB921800 and 2014CB848700) and the National Natural Science Foundation of China (Grant Nos. 11227901, 91021005, 11375167, 11374308, 11104262 and 11275183).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Science China Press
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
IU physicist leads discovery of new particle: '4-flavored' tetraquark
Bloomington IN (SPX) Mar 16, 2016
Research led by Indiana University physicist Daria Zieminska has resulted in the first detection of a new form of elementary particle: the "four-flavored" tetraquark. Zieminska, a senior scientist in the IU Bloomington College of Arts and Sciences' Department of Physics, is a lead member of the team responsible for the particle's detection by the DZero Collaboration at the U.S. Department ... read more


TIME AND SPACE
Growing Pure Algae 24 7 and Without Sunlight

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Fuel or food? Study sees increasing competition for land, water resources

TIME AND SPACE
Domino's to trial robots for pizza delivery

Hollywood robots: Movie machines may boost robot acceptance

Super elastic electroluminescent 'skin' will soon create mood robots

Amputee feels texture with a bionic fingertip

TIME AND SPACE
Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

Norway's Statoil makes U.S. wind energy bet

TIME AND SPACE
US unveils emergency braking deal with automakers

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

GM, Lyft launch car rental program for drivers

TIME AND SPACE
Catalyst fabrication method may boost fuel cell development

JLM Energy launches energy storage system Energizr 200

Creation of Jupiter interior, a step towards room temp superconductivity

Converting atmospheric carbon dioxide into batteries

TIME AND SPACE
France says will recapitalise energy giant EDF 'if there's a need'

Japan to send plutonium cache to US this weekend

Russian Scientists Suggest New 'Nuclear Battery' Concept

Czech power group CEZ profit down on drop in prices, nuclear output

TIME AND SPACE
Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

TIME AND SPACE
CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

US joins Honduran probe of environmentalist's murder









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.