Solar Energy News  
MARSDAILY
Close comet flyby threw Mars' magnetic field into chaos
by Staff Writers
Pasadena CA (JPL) Mar 15, 2016


The close encounter between comet Siding Spring and Mars flooded the planet with an invisible tide of charged particles from the comet's coma. The dense inner coma reached the surface of the planet, or nearly so. The comet's powerful magnetic field temporarily merged with, and overwhelmed, the planet's weak field, as shown in this artist's depiction. Image courtesy NASA/Goddard. For a larger version of this image please go here.

Just weeks before the historic encounter of comet C/2013 A1 (Siding Spring) with Mars in October 2014, NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft entered orbit around the Red Planet. To protect sensitive equipment aboard MAVEN from possible harm, some instruments were turned off during the flyby; the same was done for other Mars orbiters. But a few instruments, including MAVEN's magnetometer, remained on, conducting observations from a front-row seat during the comet's remarkably close flyby.

The one-of-a-kind opportunity gave scientists an intimate view of the havoc that the comet's passing wreaked on the magnetic environment, or magnetosphere, around Mars. The effect was temporary but profound.

"Comet Siding Spring plunged the magnetic field around Mars into chaos," said Jared Espley, a MAVEN science team member at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We think the encounter blew away part of Mars' upper atmosphere, much like a strong solar storm would."

Unlike Earth, Mars isn't shielded by a strong magnetosphere generated within the planet. The atmosphere of Mars offers some protection, however, by redirecting the solar wind around the planet, like a rock diverting the flow of water in a creek. This happens because at very high altitudes Mars' atmosphere is made up of plasma - a layer of electrically charged particles and gas molecules.

Charged particles in the solar wind interact with this plasma, and the mingling and moving around of all these charges produces currents. Just like currents in simple electrical circuits, these moving charges induce a magnetic field, which, in Mars' case, is quite weak.

Comet Siding Spring is also surrounded by a magnetic field. This results from the solar wind interacting with the plasma generated in the coma - the envelope of gas flowing from a comet's nucleus as it is heated by the sun. Comet Siding Spring's nucleus - a nugget of ice and rock measuring no more than half a kilometer (about 1/3 mile) - is small, but the coma is expansive, stretching out a million kilometers (more than 600,000 miles) in every direction. The densest part of the coma - the inner region near the nucleus - is the part of a comet that's visible to telescopes and cameras as a big fuzzy ball.

When comet Siding Spring passed Mars, the two bodies came within about 140,000 kilometers (roughly 87,000 miles) of each other. The comet's coma washed over the planet for several hours, with the dense inner coma reaching, or nearly reaching, the surface. Mars was flooded with an invisible tide of charged particles from the coma, and the powerful magnetic field around the comet temporarily merged with - and overwhelmed - the planet's own weak one.

"The main action took place during the comet's closest approach," said Espley, "but the planet's magnetosphere began to feel some effects as soon as it entered the outer edge of the comet's coma."

At first, the changes were subtle. As Mars' magnetosphere, which is normally draped neatly over the planet, started to react to the comet's approach, some regions began to realign to point in different directions. With the comet's advance, these effects built in intensity, almost making the planet's magnetic field flap like a curtain in the wind. By the time of closest approach - when the plasma from the comet was densest - Mars' magnetic field was in complete chaos. Even hours after the comet's departure, some disruption continued to be measured.

Espley and colleagues think the effects of the plasma tide were similar to those of a strong but short-lived solar storm. And like a solar storm, the comet's close passage likely fueled a temporary surge in the amount of gas escaping from Mars' upper atmosphere. Over time, those storms took their toll on the atmosphere.

"With MAVEN, we're trying to understand how the sun and solar wind interact with Mars," said Bruce Jakosky, MAVEN's principal investigator from the University of Colorado's Laboratory for Atmospheric and Space Physics in Boulder. "By looking at how the magnetospheres of the comet and of Mars interact with each other, we're getting a better understanding of the detailed processes that control each one."

This research was published in Geophysical Research Letters.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
MAVEN
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
Close comet flyby threw Mars' magnetic field into chaos
Greenbelt MD (SPX) Mar 10, 2016
Just weeks before the historic encounter of comet C/2013 A1 (Siding Spring) with Mars in October 2014, NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft entered orbit around the Red Planet. To protect sensitive equipment aboard MAVEN from possible harm, some instruments were turned off during the flyby; the same was done for other Mars orbiters. But a few instruments, including MA ... read more


MARSDAILY
Stanford scientists make renewable plastic from carbon dioxide and plants

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Fuel or food? Study sees increasing competition for land, water resources

MARSDAILY
Coming to a hotel near you: the robot humanoid receptionist

In emergencies, should you trust a robot

Super elastic electroluminescent 'skin' will soon create mood robots

Watch Google's AlphaGo computer take on world's best Go player

MARSDAILY
Xinjiang Goldwind now world's top wind turbine producer

Re-thinking renewable energy predictions

Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

MARSDAILY
China minister warns on subsidies as Uber, Didi battle

GM buys self-driving technology startup Cruise

VW says wrongfooted by US going public on emissions

China car sales edge down in Feb: industry group

MARSDAILY
Converting atmospheric carbon dioxide into batteries

Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

Plasma processing technique takes SNS accelerator to new energy highs

MARSDAILY
Germany's 'energy transition' still faces challenges

Argentina could be involved in building Bolivian nuclear research center

AREVA JV to undertake Sellafield decommissioning work

Japan utility appeals court order to shut reactors

MARSDAILY
Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

MARSDAILY
CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

US joins Honduran probe of environmentalist's murder









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.