Solar Energy News  
TIME AND SPACE
Closing in on elusive particles
by Staff Writers
Munich, Germany (SPX) Sep 06, 2019

Working on the germanium detector array in the clean room of Gran Sasso underground laboratory.

In the quest to prove that matter can be produced without antimatter, the GERDA experiment at the Gran Sasso Underground Laboratory in Italy is looking for signs of neutrinoless double beta decay. The experiment has the greatest sensitivity worldwide for detecting the decay in question. To further improve the chances of success, a follow-up project, LEGEND, uses an even more refined decay experiment.

While the Standard Model of Particle Physics has remained mostly unchanged since its initial conception, experimental observations for neutrinos have forced the neutrino part of the theory to be reconsidered in its entirety.

Neutrino oscillation was the first observation inconsistent with the predictions and proves that neutrinos have non-zero masses, a property that contradicts the Standard Model. In 2015, this discovery was rewarded with the Nobel Prize.

Are neutrinos their own antiparticles?
Additionally, there is the longstanding conjecture that neutrinos are so-called Majorana particles: Unlike all other constituents of matter, neutrinos might be their own antiparticles. This would also help explain why there is so much more matter than antimatter in the Universe.

The GERDA experiment is designed to scrutinize the Majorana hypothesis by searching for the neutrinoless double beta decay of the germanium isotope 76-Ge: Two neutrons inside a 76-Ge nucleus simultaneously transform into two protons with the emission of two electrons. This decay is forbidden in the Standard Model because the two antineutrinos - the balancing antimatter - are missing.

The Technical University of Munich (TUM) has been a key partner of the GERDA project (GERmanium Detector Array) for many years. Prof. Stefan Schonert, who heads the TUM research group, is the speaker of the new LEGEND project.

The GERDA experiment achieves extreme levels of sensitivity
GERDA is the first experiment to reach exceptionally low levels of background noise and has now surpassed the half-life sensitivity for decay of 10^26 years. In other words: GERDA proves that the process has a half-life of at least 10^26 years, or 10,000,000,000,000,000 times the age of the Universe.

Physicists know that neutrinos are at least 100,000 times lighter than electrons, the next heaviest particles. What mass they have exactly, however, is still unknown and another important research topic.

In the standard interpretation, the half-life of the neutrinoless double beta decay is related to a special variant of the neutrino mass called the Majorana mass. Based the new GERDA limit and those from other experiments, this mass must be at least a million times smaller than that of an electron, or in the terms of physicists, less than 0.07 to 0.16 eV/c^2 [1].

Consistent with other experiments
Also other experiments limit the neutrino mass: the Planck mission provides a limit on another variant of the neutrino mass: The sum of the masses of all known neutrino types is less than 0.12 to 0.66 eV/c^2.

The tritium decay experiment KATRIN at the Karlsruhe Institute of Technology (KIT) is set-up to measure the neutrino mass with a sensitivity of about 0.2 eV/c^2 in the coming years. These masses are not directly comparable, but they provide a cross check on the paradigm that neutrinos are Majorana particles. So far, no discrepancy has been observed.

From GERDA to LEGEND
During the reported data collection period, GERDA operated detectors with a total mass of 35.6 kg of 76-Ge. Now, a newly formed international collaboration, LEGEND, will increase this mass to 200 kg of 76-Ge until 2021 and further reduce the background noise. The aim is to achieve a sensitivity of 10^27 years within the next five years. Probing Majorana neutrinos with double beta decay

Research paper


Related Links
Technical University of Munich (TUM)
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Providing a solution to the worst-ever prediction in physics
Geneva, Switzerland (SPX) Aug 30, 2019
The cosmological constant, introduced a century ago by Albert Einstein in his general theory of relativity, is a thorn in the side of physicists. The difference between the theoretical prediction of this parameter and its measurement based on astronomical observations is of the order of 10^121. It's no surprise to learn that this estimate is considered the worst in the entire history of physics. In an article to be published in Physics Letters B, a researcher from the University of Geneva (UNIGE), ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New catalytic reactor turns CO2 into liquid fuel

Dangerous wild grass will be used in batteries

Researchers use AI to plot green route to nylon

Biomaterials smarten up with CRISPR

TIME AND SPACE
NASA Robots Compete Underground in DARPA Challenge

Russian humanoid robot boards space station after delay

Russia sends 'Fedor' its first humanoid robot into space

Amazon, Microsoft, 'putting world at risk of killer AI': study

TIME AND SPACE
Angry residents send German wind industry spinning

Colombia's biggest wind power portfolio purchased by AES Colombia

Growth of wind energy points to future challenges, promise

Scout obtains construction permit for 200MW Sweetland Wind Farm

TIME AND SPACE
Brussels mulls car use tax to cut traffic jams

Singapore to trial driverless buses booked with an app

Seoul to fine Volkswagen over 'illicit' emissions devices

Uber shares skid as quarterly loss soars

TIME AND SPACE
First report of superconductivity in a nickel oxide material

Coating developed by Stanford researchers brings lithium metal battery closer to reality

Physicists' study demonstrates silicon's energy-harvesting power

Ammonia for fuel cells

TIME AND SPACE
Russia launches floating nuclear reactor in Arctic despite warnings

US Govt issues new safety rules for launching nuclear systems into space

Russia launches floating nuclear reactor in Arctic despite warnings

Slovenia PM backs building second nuclear reactor

TIME AND SPACE
Macro-energy systems and the science of the energy transition

Oslo wants to reduce its emissions by 95 percent by 2030

Northern Irish pensioner thrives in off grid cottage

Global warming = more energy use = more warming

TIME AND SPACE
Brazil president will make video call to Amazon summit

Fires not the only threat facing Amazon

Defiant Bolsonaro vows to defend Amazon policy 'in wheelchair' at UN

G7 pledges millions to fight Amazon fires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.