Solar Energy News  
EARTH OBSERVATION
Cloud formation: How feldspar acts as ice nucleus
by Staff Writers
Karlsruher, Germany (SPX) Dec 13, 2016


Ice crystals on a feldspar crystallite under the electron microscope. Although they grow on various levels of the feldspar, they have the same orientation. Image courtesy Alexei Kiselev and Dagmar Gerthsen, KIT. For a larger version of this image please go here.

About 90 percent of precipitation over land depends on the formation of ice crystals in clouds, which fall down due to their increasing weight. But water in clouds only freezes when certain particles are present, on which ice crystals can grow.

Of all aerosol particles, i.e. solid suspended particles in the atmosphere, however, only few act as ice nuclei. These rare aerosol particles decisively determine precipitation on earth. Hence, it is important to understand what makes them differ from other particles.

"Such an understanding would improve our ability to predict ice and precipitation formation in a future changed climate with changed aerosol loading," says Professor Thomas Leisner, Head of the Atmospheric Aerosol Research Division of KIT's Institute of Meteorology and Climate Research (IMK-AAF).

Scientists of IMK-AAF, in cooperation with researchers of the KIT Laboratory of Electron Microscopy (LEM) and University College London (UCL) have now succeeded in solving this question for the most important class of inorganic atmospheric ice nuclei, i.e. mineral dust particles consisting of feldspar.

As is reported in the Science magazine, the scientists combined electron microscopy observations with molecular modeling to determine for the first time the atomic nature of this important inorganic ice nucleus.

They showed that ice starts to grow on feldspar crystallites not on the accessible crystalline faces, but at microscopic defects like edges, cracks, and small depressions. Even though these defects are distributed randomly at the crystallite surface, the ice crystals grow with the same orientation relative to the feldspar crystal lattice.

From these observations and from extensive molecular modeling, the scientists concluded that a specific crystal face that only occurs at defects on the surface of the feldspar crystallite is the underlying nucleus for ice formation.

"Feldspar is one of the most active atmospheric ice nucleating agents, but why it is so good at making ice has remained unclear," said Professor Angelos Michaelides of UCL.

"By identifying the active site for ice nucleation on feldspar, we have found an important piece of the puzzle." The researchers now expect similar studies to reveal the properties of other minerals acting as ice nuclei.

Active sites in heterogeneous ice nucleation - the example of K-rich feldspars


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Karlsruher Institut fur Technologie
Earth Observation News - Suppiliers, Technology and Application






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
Illinois researchers discover hot hydrogen atoms in Earth's upper atmosphere
Chicago IL (SPX) Dec 07, 2016
A team of University of Illinois researchers has discovered the existence of hot atomic hydrogen (H) atoms in an upper layer of Earth's atmosphere known as the thermosphere. This finding, which the authors report in Nature Communications, significantly changes current understanding of the H distribution and its interaction with other atmospheric constituents. Because H atoms are very light ... read more


EARTH OBSERVATION
People willing to pay more for new biofuels

Investing in the 'bioeconomy' could create jobs and reduce carbon emissions

Argonne researchers study how reflectivity of biofuel crops impacts climate

UNIST researchers turn waste gas into road-ready diesel fuel

EARTH OBSERVATION
Chinese firm scraps German tech deal after US block

Internal sensors help soft robot hand feel the world like a human

Wall-jumping robot is most vertically agile ever built

Boeing to acquire Liquid Robotics

EARTH OBSERVATION
Apple invests in China wind farms

Offshore wind makes U.S. debut

German energy company plants wind farm seed in Texas

New York to bid in Federal Offshore Wind Auction

EARTH OBSERVATION
Google self-driving car unit spins off as Waymo

Electric vehicle market footprint growing

China auto sales peak in November: group

US unveils 'V2V' plan for cars to talk to each other

EARTH OBSERVATION
Alternative fuel cell technology reduces cost

Engineers build refrigerator powered by sound waves

Energy innovation is focus of Gates-led $1 billion fund

The promise of greener power generation

EARTH OBSERVATION
Bulgaria seeks investor to revive nuclear project

Japan switches on nuclear reactor after safety shutdown

Fukushima costs to double to nearly $180 bn: report

'Diamond-age' of power generation as nuclear batteries developed

EARTH OBSERVATION
US push to low-carbon future 'unstoppable': Biden

Energy-hungry Asia slowing down, lender says

China's Shanghai Electric to invest $9bn in Pakistan upgrades

China power plant collapse kills at least 22: Xinhua

EARTH OBSERVATION
A roadmap for guiding development and conservation in the Amazon

Indonesia expands protection for peatlands, climate

Laser technique boosts aerial imaging of woodlands

Green groups pressure Spain over 'at risk' wetlands









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.