Solar Energy News  
Cluster Sees Tsunamis In Space

The solar wind is a continuous flow of particles from the Sun consisting of electrically charged particles in a state known as plasma. The Earth's magnetic field is distorted by the solar wind to a droplet-shaped magnetic bubble called the magnetosphere. On the nightside, the Earth's magnetic field is stretched into a long tail, the magnetotail, much like the tail of a comet. The blue cavity represents the magnetosphere. The red area denotes the region where a large amount of charged particles reside and intense electric currents flow within the magnetosphere. The four Cluster satellites encountered a flow reversal region in the magnetotail. Credits: Tony Lui, JHU/APL, USA
by Staff Writers
Paris, France (ESA) Apr 13, 2007
Cluster is providing new insights into the working of a 'space tsunami' that plays a role in disrupting the calm and beautiful aurora, or northern lights, creating patterns of auroral dances in the sky.

Generally seen in high-latitude regions such as Scandinavia or Canada, aurorae are colourful curtains of light that appear in the sky. Caused by the interaction of high-energy particles brought by the solar wind with Earth's magnetic field, they appear in many different shapes.

Early in the evening, the aurora often forms a motionless green arc that stretches across the sky in the east-west direction. Colourful dancing auroral forms are the results of disturbances known as 'substorms' taking place in Earth's magnetosphere.

These perturbations can affect our daily lives, in particular by affecting the reception of GPS signals. Thus, understanding the physical processes involved is important to our routine life and security.

These substorms typically last one to two hours and are three-dimensional physical phenomena spread over altitudes from 100 to 150 000 kilometres. Trying to understand such complex physical processes with a single scientific spacecraft is like trying to predict the behaviour of a tsunami with a single buoy in an ocean. That is why the simultaneous use of several satellites, like the Cluster constellation, is necessary to understand these events.

Currently, there are two competing theoretical models to describe these substorms or space tsunamis. The first one is called the 'Current-Disruption' model, while the second one is the 'Near Earth Neutral Line Model'. Using data from the four Cluster spacecraft, a group of scientists from both sides of the Atlantic were able to confirm that the behaviour of some substorms is consistent with the Current Disruption model.

A substorm develops and builds up in different stages, and it is the detailed study of one of these stages that helps us to understand which of the two models apply. For example, in the late stage of substorm development, auroral disturbances move towards the poles, suggesting that the energy source for auroras and substorms moves away from Earth.

Previous satellite observations have found that, during this late stage, the flows of plasma (a gas of charged particles populating Earth's magnetosphere) in the magnetotail exhibit a reversal in direction. In recent years it was generally thought that a flow reversal region is where magnetic reconnection takes place, that is where the energy of the magnetic field is converted into particle energy (dissipation effect), resulting in high-speed plasma flows that hurl towards Earth, like space tsunamis.

Detailed analysis of data obtained by the Cluster satellites while crossing such a region in the magnetotail, where flows of plasma exhibit a reversal in direction, has been reported by the team of Dr Tony Lui, a scientist of the Applied Physics Laboratory at the John Hopkins University, Maryland, USA, Co-Investigator of the Research with Adaptive Particle Imaging Detectors (RAPID) high-energy particles experiment on Cluster, and lead author of the study.

Thanks to the unique capability of Cluster to perform simultaneous multipoint measurements, the scientists were able to derive several physical parameters never before estimated for such a flow reversal region.

By comparing the directions of the electric current and the electric field in the magnetosphere it is possible to understand whether the cause of the flow reversal is a dissipation effect (where magnetic field energy converted to particle energy) or a dynamo effect (where particle energy is converted to magnetic field energy). For this case study, the Cluster scientists observed that features associated with flow reversal are actually very complex, consisting of both dissipation and dynamo effects in localised sites.

This result shows that the plasma turbulence disrupts the local electric current. "The features we observed are consistent with the current disruption model. However, it is unclear how general these findings are. More events will be examined in the future," said Dr Lui.

"The magnetic substorm phenomenon is a hot topic of research," added Philippe Escoubet, Cluster and Double Star project scientist for ESA. "This new Cluster result will certainly contribute to the on-going scientific debate and foster research cooperation with scientists involved in the newly launched NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS), a mission specifically dedicated to studying substorms."

The findings appear in the paper, "Cluster observation of plasma flow reversal in the magnetotail during a substorm", published in Annales Geophysicae 9 August 2006. Lui, A. T. Y., Y. Zheng, Y. Zhang, H. R�me, M. W. Dunlop, G. Gustafsson, S. B. Mende, C. Mouikis, and L. M. Kistler

Related Links
Cluster overview
Double Star overview
SOHO overview
Solar Orbiter
Space weather
Solar Science News at SpaceDaily
Solar Science News at SpaceDaily



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Magnetic Fields Get Reconnected In Turbulent Plasma Too Cluster Reveals
Paris (ESA) Mar 29, 2007
Using measurements of the four ESA's Cluster satellites, a study published this week in Nature Physics shows pioneering experimental evidence of magnetic reconnection also in turbulent 'plasma' around Earth.







  • Mitsubishi Corp Buys Uranium Rights In Canada
  • Japanese Nuclear Industry Vows Safety
  • Egypt And Russia Drafting Nuclear Cooperation Agreements
  • Russian Nuclear Chief Travels To Japan For Nuclear Deals

  • Want To Monitor Climate Change Pick Up A Penguin
  • US Pollution Cop Defends Bush Greenhouse Gas Record
  • Trans Atlantic Rift Not That Great On Global Warming
  • Environmentalists Hail US Supreme Court Ruling As Bush Says Issue Serious

  • Farmland Across China At Risk From Pollution
  • Anthropologist Finds Earliest Evidence Of Maize Farming In Mexico
  • Boost In Rice Production To Avoid Food Shortages In Indonesia
  • Wine Industry Faces Major Challenge From Global Warming

  • Marine Scientists Monitor Longest Mammal Migration
  • Why Small Dogs Are Small
  • Trends In Bird Observations Reveal Changing Fortunes For Different Species
  • Tibetan Microbe Mats

  • Orbital To Provide Abort Test Booster For NASA Testing
  • Air Force Awards RLV Design Contract To XCOR Aerospace
  • ATK Highlights Progress On Ares I Crew Launch Vehicle
  • Anomalous Behaviour Affects Firing Test Of Vega Zefiro 9 Motor



  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences
  • ISRO To Focus On Societal Projects
  • USGS Defines Roles For New Satellite Mission

  • Northrop Grumman Selected For Alternative Satellite Research And Development Effort
  • Raytheon Receives Approval For Precision Placement Of NPOESS Antennae In Antarctica
  • A Feather-Light Touch Needed For Darwin Frictionless Optics
  • Shared Satellite Architecture Enables More Efficient Mission Control

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement