. Solar Energy News .




.
FLORA AND FAUNA
Coaxing a Shy Microbe to Stand Out in a Crowd
by Staff Writers
Moffet Field CA (NASA) Feb 09, 2012

A graphical view of tens of millions of bases of DNA extracted from a marine microbial community found in Puget Sound, reveals the entangled genomes of bacteria, archaea and viruses. Scientists extracted 2 million of these to map the genome of one particular marine microorganism that had defied investigation. Credit: V Iverson/U of Washington.

The communities of marine microorganisms that make up half the biomass in the oceans and are responsible for half the photosynthesis the world over, mostly remain enigmatic. A few abundant groups have had their genomes described, but the natures and functions of the rest remain mysterious.

Understanding how the changing global environment might affect these important ecosystem players is like trying to understand the solar system when all you can discern are the brightest objects in the sky.

Now University of Washington scientists have advanced a method that allowed them to single out a marine microorganism and map its genome even though the organism made up less than 10 percent of a water sample teeming with many millions of individuals from dozens of identifiable groups of microbes.

Typically researchers have had to isolate an organism and culture it in a lab before they could begin to crack its genome.

"We've done the opposite," said Vaughn Iverson, a UW doctoral student in oceanography and lead author of a report in the Feb. 2 issue of the journal Science.

"We went to the environment, didn't make any attempt to isolate any of the organisms in a laboratory sense and, instead, extracted the DNA from everything in the sample," he said.

"It's a technique known as metagenomics. The UW's innovation was to develop computational methods to simultaneously sequence all the parts and then reconstruct the chosen genome."

The researchers determined the genome of a member of the marine group II Euryarchaeota, something that has defied investigators since those microorganisms were first detected about a decade ago.

They are found widely across the world's oceans so - although not always abundant - biologists assume they have some important function, said Virginia Armbrust, UW professor of oceanography and corresponding author on the Science paper. The resulting genome offers hints that Euryarchaeota might serve as a kind of cleanup crew after diatoms, another ocean microorganism, bloom and die.

"Ocean microorganisms are regulators of large biogeochemical cycles so we need to understand the different members of those communities," Armbrust said. "As we change coastal communities - for better or for worse - we need to understand the players that are there."

The genome also clarified the origin of a gene that allows marine group II Euryarchaeota, as well as many marine bacteria, to harvest energy directly from sunlight, with no photosynthesis involved.

The approach advanced by the UW team isn't just useful for studying microorganisms in the oceans, but also for those found in soils and algal communities with potential for biofuels, or for understanding emerging strains of antibiotic-resistant bacteria that threaten human or animal health, Iverson said. The UW approach takes less time and money.

"Having to culture things to sequence them is an extra step and time consuming if they're difficult to culture," he said. "It becomes a chicken and egg problem. If you have never been able to study it, you don't know what it needs. But in order to study it, you must provide the environment in the lab that it requires."

"If microbiologists can get the DNA directly and sequence it without having to culture it, that's a big advantage."

Metagenomics - extracting DNA from whole microbial communities and sequencing it to reveal genes - has been used for about a decade with marine microorganisms. Sequencing equipment and methods have leapt forward since then, thanks to many researchers and companies, the UW scientists said.

But previous techniques allowed scientists to reconstruct an organism's genome only if the organism made up a third or more of a sample. The UW team showed how to construct the genome of marine group II Euryarchaeota even though it comprised only 7 percent of the cells found in 100 liters of water from Puget Sound near Seattle.

The sample was analyzed using equipment purchased with funding to Armbrust from the Gordon and Betty Moore Foundation, which also paid for Iverson's work. The project was conducted in labs run by Armbrust and co-author Robert Morris, a UW assistant professor of oceanography. Other co-authors are Christian Frazar, Chris Berthiaume and Rhonda Morales, all with the UW.

"Now you can afford to get things that are a much smaller fraction of your overall sample," Iverson said. "That's what's really new - to assemble something with a genome that is not closely related to anything else that is known, so there are no templates or references to work from, and to discern organisms making up less than10 percent of a sample from a complex community."

Related Links
University of Washington
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Not the black sheep of domestic animals
Canberra, Australia (SPX) Feb 09, 2012
Mapping the ancestry of sheep over the past 11,000 years has revealed that our woolly friends are stars among domestic animals, boasting vast genetic diversity and substantial prospects for continued breeding to further boost wool and food production for a rising world population. An international research team has provided an unprecedented in-depth view of the genetic history of sheep, on ... read more


FLORA AND FAUNA
Sustainable land use strategies to support bioenergy

Fuel from market waste

Enerkem and GreenField Ethanol Announce Quebec's First Waste-to-Biofuels Production Facility

Pennsylvania State Fire Academy Offers Course in Ethanol Response

FLORA AND FAUNA
Japan scientist makes 'Avatar' robot

Unraveling a Butterfly's Aerial Antics Could Help Builders of Bug-Size Flying Robots

FLORA AND FAUNA
New EU wind power capacity near level

FLORA AND FAUNA
Driving the green

A new system of stereo cameras detects pedestrians from within the car

China auto sales hit the brakes in January

25 hybrid buses for Goteborg

FLORA AND FAUNA
Argentina says Britain has nuclear weapons in Falklands

Unusual 'collapsing' iron superconductor sets record for its class

Engineers Boost Computer Processor Performance By Over 20 Percent

An electronic green thumb

FLORA AND FAUNA
U.S green lights two new reactors

French reactor down as cold snap drives power demand

US approves first nuclear plant in decades

China authorities demand nuclear plant halt

FLORA AND FAUNA
Germany forced to tap into electricity reserves

China to face electricity shortages?

FLORA AND FAUNA
UN recognizes US Girl Scouts for palm oil effort

WWF urges Bulgaria to drop forest law changes


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement