Subscribe free to our newsletters via your
. Solar Energy News .




WOOD PILE
Columbia engineers develop new approach to modeling Amazon seasonal cycles
by Staff Writers
New York NY (SPX) Sep 02, 2015


Columbia engineers develop new approach to modeling amazon seasonal cycles that will improve understanding the impact of deforestation and climate change on the Amazon basin.

With the rise of CO2 in Earth's atmosphere, understanding the climate of tropical forests--the Amazon in particular--has become a critical research area. A recent NASA study showed that these regions are the biggest terrestrial carbon dioxide sinks on our planet, absorbing 1.4 billion metric tons of CO2 out of a total global terrestrial absorption of 2.5 billion.

To simulate the tropical climate to learn more about its processes, climate scientists have typically been relying on general circulation models (GCMs) to simulate the tropical climate. But these models exhibit biases over tropical continents, showing peak evaporation and photosynthesis rates in the wrong season, as well as rain too early in the day.

A Columbia Engineering team led by Pierre Gentine, professor of earth and environmental engineering, and Adam Sobel, professor of applied physics and applied mathematics and of earth and environmental sciences, has developed a new approach, opposite to climate models, to correct climate model inaccuracies using a high-resolution atmospheric model that more precisely resolves clouds and convection (precipitation) and parameterizes the feedback between convection and atmospheric circulation. This study is published in the August 31 online Early Edition of Proceedings of the National Academy of Sciences (PNAS).

"Our new simulation strategy paves the way for better understanding of the water and carbon cycles in the Amazon," says Gentine, whose research focuses on the feedback between land and atmosphere. "Our approach should help us learn more about the role of deforestation and climate change on the forest."

Usama Anber, Sobel's PhD student at Columbia's Lamont-Doherty Earth Observatory and the paper's first author, simulated the Amazon climate and demonstrated the key role that the morning fog layer plays on evaporation and surface radiation. This fog layer is induced by the large nighttime precipitation, missed by current climate models, which underestimated the effect of clouds and precipitation.

The researchers found that the fog layer is an essential regulator of the Amazon climate: during the wet season, it artificially modifies the duration of daytime because it reflects sunlight during the early morning. During the dry season, with no fog layer to reflect sunlight, the smaller cloud cover allows plants to receive much higher radiation, increasing evaporation and photosynthesis rates, another process missed by the GCMs.

"Our study demonstrates that using coupled land-atmosphere models with resolved convection and parameterized large-scale dynamics produces very accurate results," Anber observes. "It is critical to our understanding of tropical climates."

The team, which also included Shuguang Wang, associate research scientist in the Department of Applied Physics and Applied Mathematics, plans next to examine CO2 cycles to see if they can develop better predictions of climate changes.

"If we can improve our estimations of evaporation over land, then we can also improve water resources management, and weather and climatic forecasts," Gentine adds. "Working on the hydrologic and carbon cycles is exciting because it will help determine the fate of our planet."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Columbia University School of Engineering and Applied Science
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WOOD PILE
Increasingly severe disturbances weaken world's temperate forests
Sequoia CA (SPX) Aug 31, 2015
Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades. "While we have been trying to manage ... read more


WOOD PILE
Methanotrophs: Could bacteria help protect our environment?

Waste coffee used as fuel storage

Biomethane out of waste for more than 2000 households

WELTEC Biomethane Plant in France Launches Feed-in

WOOD PILE
Navy gives continued development approval for EOD robot

Biophysicists take small step in quest for 'robot scientist'

Smooth robot movements reduce energy consumption by up to 40 percent

Navy orders HazMat robots

WOOD PILE
Researchers find way for eagles and wind turbines to coexist

North Dakota plans more wind power capacity

European Funding brings ZephIR 300 wind lidar to Malta

New technology could reduce wind energy costs

WOOD PILE
California Uber driver lawsuit gets class-action stamp

French electric car-sharing service launches in US

Tesla car gets best-ever rating from Consumer Reports

Foreign carmakers still driven to invest in China

WOOD PILE
Berkeley releases comprehensive analysis of electricity reliability trends

Australia's coal city backs green future

Novel nanostructures for efficient long-range energy transport

New easily fabricated, flexible and wearable white-light LED

WOOD PILE
After delays, Finland's showcase nuclear reactor to face tests

Troubled Finnish nuclear reactor to enter test phase in 2016

Kazakhstan signs deal to host nuclear fuel bank

Terms of Jordan nuke plant deal to be clear by 2017

WOOD PILE
Kyrgyzstan hails 'historic' China-financed power line

Pakistan power sector target of ADB funding

Basic energy rights for low-income populations proposed in Environmental Justice journal

RWE shakes up British subsidiary

WOOD PILE
Columbia engineers develop new approach to modeling Amazon seasonal cycles

Increasingly severe disturbances weaken world's temperate forests

Study: Tropical forests to disappear faster than expected

Boreal forests threatened by climate change




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.