![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Washington DC (SPX) Aug 18, 2021
Many countries around the world are committed to reducing emissions or reaching net-zero emissions to meet the United Nations' climate goals of maintaining temperature increases below 1.5 degrees Celsius by 2050. Renewable energy technologies, particularly solar energy panels, will play a significant role in achieving these goals. To fully harness the potential of sunlight - the world's most abundant energy resource - scientists have been trying for decades to maximize the amount of energy that can be extracted from the sun. In Applied Physics Letters, by AIP Publishing, researchers from Oxford PV describe how pairing metal halide perovskites with conventional silicon leads to a more powerful solar cell that overcomes the 26% practical efficiency limit of using silicon cells alone. "We identified perovskites as the perfect partner for a tandem system with silicon," said author Laura Miranda Perez. From a materials perspective, perovskites fulfill all the optoelectronic requirements for a photovoltaic cell, and they can be manufactured using existing processes. These features make perovskite a perfect plug-and-play addition to silicon technology as it can be deposited as a layer onto a conventional silicon solar cell. "We're proving the potential of perovskite-on-silicon tandem technology through the continuous achievement of world-record efficiencies, with our current record at 29.52%," said Miranda Perez. The elemental composition of the perovskite material is readily available within existing supply chains, providing a clear pathway to scale up the technology quickly to meet the ambitious solar energy targets needed to tackle climate change. Also, the higher power output of perovskite-on-silicon tandem cells could offset the carbon footprint embodied in the production of high-purity silicon required for photovoltaic cells. Consequently, the researchers found adding perovskite onto existing silicon photovoltaics is the fastest way to improve silicon performance as it bypasses the industry disruptions associated with the introduction of a brand-new technology. The researchers focused on tandem solar cells for seven years, and the group is now very close to starting mass commercial production in its factory in Brandenburg, Germany. "We want to help people understand the huge potential of perovskite-on-silicon tandem technology to boost the efficiency of solar installations and to help the world reach the goal of providing sustainable energy for all," said Miranda Perez.
Research Report: "Perovskite/silicon tandem photovoltaics: Technological disruption without business disruption"
![]() ![]() Solar cells combining perovskite, silicon capture more of the sun's energy Washington DC (UPI) Aug 17, 2021 The best solar cells currently capture just more than a quarter of the sun's energy. Much of sun's power potential remains untapped. For decades, scientists have been trying to expand the efficiency limit of both perovskite and silicon solar cells. Scientists at Oxford PV, a perovskite research firm in Britain, found they could beat the current efficiency barrier by combining the two technologies. Perovskite is a calcium titanium oxide mineral with valuable optoelectronic properti ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |