Subscribe free to our newsletters via your
. Solar Energy News .




IRON AND ICE
Comet flyby: OSIRIS catches glimpse of Rosetta's shadow
by Staff Writers
Paris (ESA) Mar 05, 2015


Graphic to illustrate the difference between how a sharp shadow is generated by a point source (left) and a fuzzy shadow by a diffuse source (right). Images courtesy Spacecraft: ESA/ATG medialab. Comet background: ESA/Rosetta/NAVCAM - CC BY-SA IGO 3.0.

Images from the OSIRIS scientific imaging camera taken during the close flyby on 14 February have now been downlinked to Earth, revealing the surface of Comet 67P/C-G in unprecedented detail, and including the shadow of the spacecraft encircled in a wreath of light.

The image released shows an area near the edge of the comet's "belly" close to the Imhotep-Ash regional boundary, where a mesh of steep slopes separates smooth-looking terrains from a craggier area. The image was taken from a distance of 6 km from the comet's surface and has a resolution of 11 cm/pixel. It covers an area of 228 x 228 m.

To better identify the exact region on the comet, in the graphic below we compare the new OSIRIS narrow-angle camera image with a wider view of the comet, along with the NAVCAM image taken at 14:15 UT, noting that there are uncertainties in the distance to the surface and change in perspective between the images.

Indeed, while the match on the smooth-looking region at the bottom of the NAC image in the displayed orientation is good, it is harder to match the upper half because of the lack of shadows in the NAC image, and because the geometry/viewing perspective has changed between the images.

This means that the NAC image would have to be distorted and "draped" over the surface to fit the NAVCAM properly. To better understand the relationship of the images, you can download a short movie that fades through the images here.

During the flyby, Rosetta not only passed closer by the comet than ever before, but also passed through a unique observational geometry: for a short time the Sun, spacecraft, and comet were exactly aligned. In this geometry, surface structures cast almost no shadows, and therefore the reflection properties of the surface material can be discerned.

"Images taken from this viewpoint are of high scientific value," says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany. "This kind of view is key for the study of grain sizes."

As a side effect of this exceptional observational geometry, Rosetta's shadow can be seen cast on the surface of Comet 67P/C-G as a fuzzy rectangular-shaped dark spot surrounded by a bright halo-like region.

The shadow is fuzzy and somewhat larger than Rosetta itself, measuring approximately 20 x 50 metres. If the Sun were a point source, the shadow would be sharp and almost exactly the same size as Rosetta (approximately 2 x 32 m).

However, even at 347 million km from 67P/C-G on 14 February, the Sun appeared as a disc about 0.2 degrees across (about 2.3 times smaller than on Earth), resulting in a fuzzy "penumbra" around the spacecraft's shadow on the surface. In this scenario and with Rosetta 6 km above the surface, the penumbra effect adds roughly 20 metres to the spacecraft's dimensions, and which is cast onto the tilted surface of the comet.

If you were standing on the surface with Rosetta high above you, there would be no place in the shadow where the entire Sun would be blocked from view, which explains why there is no fully dark core to the shadow.

Rosetta is not the first spacecraft to capture its own shadow in this way. In 2005, JAXA's Hayabusa spacecraft captured its shadow on asteroid Itokawa. However, because Hayabusa was only a few tens of metres above the surface, the penumbral effect was much less, resulting in a sharper and darker shadow of the spacecraft.

Also, the comet surface surrounding Rosetta's shadow on Comet 67P/C-G appears significantly brighter than the rest of the surface seen in the image. Scientists refer to this effect as the 'opposition surge' and it is commonly observed when highly-structured regolith surfaces on planets and moons are illuminated directly behind the observer. For example, astronauts on the lunar surface saw the effect surrounding their own shadows. The primary cause of opposition surge is 'shadow hiding'.

When the Sun is directly behind the observer, the shadows cast by small grains disappear from the perspective of the observer, hidden behind the grains themselves, leading to a pronounced increase in brightness. There may also be a contribution from coherent backscatter due to the retro-reflective properties of small dust grains.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rosetta blog
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





IRON AND ICE
Dark Energy Camera catches breathtaking glimpse of comet Lovejoy
Batavia IL (SPX) Mar 02, 2015
On December 27, 2014, while scanning the southern sky as part of the Dark Energy Survey, researchers snapped the above shot of comet Lovejoy. The image above was captured using the 570-megapixel Dark Energy Camera, the world's most powerful digital camera. Each of the rectangular shapes above represents one of the 62 individual fields of the camera. At the time this image was t ... read more


IRON AND ICE
Step change for screening could boost biofuels

Novel pretreatment could cut biofuel costs by 30 percent or more

New catalyst to create chemical building blocks from biomass

Electricity from biomass could make western US carbon-negative

IRON AND ICE
Rise of the Machines: video gamers beware

Japan's Robear: Strength of a robot, face of a bear

HAPTIX Starts Work to Provide Prosthetic Hands with Sense of Touch

Talking Japanese space robot back on Earth

IRON AND ICE
Wind energy: TUV Rheinland supervises Senvion sale

Bright spot for wind farms amid RET gloom

Allianz acquire OX2 wind farm in northern Sweden

No surprises for wind industry in NHMRC report

IRON AND ICE
Electric-car driving range and emissions depend on where you live

Uber discloses data breach, theft of license numbers

Toyota unveils fuel-cell car assembly line

First Veefil Electric Vehicle Fast Charger installed in Brisbane goes live

IRON AND ICE
Breakthrough in OLED technology

Glass coating improves battery performance

CWRU researchers bring clean energy a step closer

Corvus Energy to supply another hybrid ferry battery solution

IRON AND ICE
Study Involving UT Nuclear Engineer Could Change Nuclear Fuel

Hungary to keep secret details of Russian nuclear plant deal

South Korea, Saudi Arabia to Pen Nuclear Cooperation Agreement

SKorea, Saudi sign nuclear cooperation memo

IRON AND ICE
Philippines to send home Chinese energy experts

Massive clean energy opportunities in reach in Western Australia

EU unveils plans for historic single energy market

India's Modi says energy pledge not based on foreign pressure

IRON AND ICE
Munching bugs thwart eager trees, reducing the carbon sink

Greenpeace rebukes paper giant over farmer's death

Modern logging techniques benefit rainforest wildlife

Massive amounts of Saharan dust fertilize the Amazon rainforest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.