Solar Energy News  
CHIP TECH
Complex shapes of photons to boost future quantum technologies
by Staff Writers
Tampere, Finland (SPX) Jun 06, 2021

Conceptual image of the used method for manipulating the spatial structures of photons using multiple consecutive lossless modulations.

As the digital revolution has now become mainstream, quantum computing and quantum communication are rising in the consciousness of the field. The enhanced measurement technologies enabled by quantum phenomena, and the possibility of scientific progress using new methods, are of particular interest to researchers around the world.

Recently two researchers at Tampere University, Assistant Professor Robert Fickler and Doctoral Researcher Markus Hiekkamaki, demonstrated that two-photon interference can be controlled in a near-perfect way using the spatial shape of the photon. Their findings were recently published in the prestigious journal Physical Review Letters.

"Our report shows how a complex light-shaping method can be used to make two quanta of light interfere with each other in a novel and easily tuneable way", explains Markus Hiekkamaki.

Single photons (units of light) can have highly complex shapes that are known to be beneficial for quantum technologies such as quantum cryptography, super-sensitive measurements, or quantum-enhanced computational tasks. To make use of these so-called structured photons, it is crucial to make them interfere with other photons.

"One crucial task in essentially all quantum technological applications is improving the ability to manipulate quantum states in a more complex and reliable way. In photonic quantum technologies, this task involves changing the properties of a single photon as well as interfering multiple photons with each other;" says Robert Fickler, who leads the Experimental Quantum Optics group at the university.

Linear optics bring promising solutions to quantum communications
The demonstrated development is especially interesting from the point of view of high-dimensional quantum information science, where more than a single bit of quantum information is used per carrier. These more complex quantum states not only allow the encoding of more information onto a single photon but are also known to be more noise-resistant in various settings.

The method presented by the research duo holds promise for building new types of linear optical networks. This paves the way for novel schemes of photonic quantum-enhanced computing.

"Our experimental demonstration of bunching two photons into multiple complex spatial shapes is a crucial next step for applying structured photons to various quantum metrological and informational tasks", continues Markus Hiekkamaki.

The researchers now aim at utilizing the method for developing new quantum-enhanced sensing techniques, while exploring more complex spatial structures of photons and developing new approaches for computational systems using quantum states.

"We hope that these results inspire more research into the fundamental limits of photon shaping. Our findings might also trigger the development of new quantum technologies, e.g. improved noise-tolerant quantum communication or innovative quantum computation schemes, that benefit from such high-dimensional photonic quantum states", adds Robert Fickler.

Research Report: "High-Dimensional Two-Photon Interference Effects in Spatial Modes"


Related Links
Tampere University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
SMART investigates the science behind varying performance of different colored LEDs
Boston MA (SPX) May 06, 2021
Researchers from the Low Energy Electronic Systems (LEES) interdisciplinary research group at Singapore-MIT Alliance for Research and Technology (SMART), MIT's research enterprise in Singapore, together with MIT and National University of Singapore (NUS), have found a method to quantify the distribution of compositional fluctuations in the indium gallium nitride (InGaN) quantum wells at different indium concentrations. InGaN light emitting diodes (LEDs) have revolutionized the field of solid-state ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Seaweed experts launch global group to restore kelp forests with new technique

Environmental concerns propel research into marine biofuels

Transforming CO2 into light-emitting carbon

Saving the climate with solar fuel

CHIP TECH
Slender robotic finger senses buried items

Enabling human control of autonomous partners

Air Force unveils exoskeleton to aid aerial ports in lifting

Helping robots collaborate to get the job done

CHIP TECH
US to open California coast to wind power

US approves its biggest offshore wind farm yet

Vertical turbines could be the future for wind farms

Researchers working to further develop monopile production for offshore wind farms

CHIP TECH
Peugeot to be prosecuted in France over 'dieselgate'

Key to carbon-free cars? Look to the stars

China's factory prices soar in May but consumers avoid cost surge

Lordstown Motors warns it needs more capital to keep going

CHIP TECH
Engineers design battery to power flying cars

Compound commonly found in candles lights the way to grid-scale energy storage

China's artificial sun brings nuclear fusion energy closer

Highview Power Developing 2 GWh of Liquid Air Long Duration Energy Storage Projects in Spain

CHIP TECH
Using a mineral 'sponge' to catch uranium

EDF Energy begins closure of British nuclear plant

Framatome acquires Valinox, a tube specialist for nuclear reactor steam generators

Framatome achieves milestone in robotics project for dismantling and decommissioning

CHIP TECH
S.Africa intensifies power cuts as winter demand climbs

Clean investment surge needed to meet climate goals: IEA

G7 steps towards making companies disclose climate risks

Putin orders govt to have emissions reduction plan by October

CHIP TECH
Brazil leader promises Yanomami no unwanted mining on their lands

Brazil environment minister probed for timber trafficking

Ethiopia's Abiy kicks off massive tree-planting drive

Brazil deforestation 94% illegal: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.