Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Computing experts unveil superefficient 'inexact' chip
by Staff Writers
Houston TX (SPX) May 24, 2012


In terms of speed, energy consumption and size, inexact computer chips like this prototype, are about 15 times more efficient than today's microchips. Credit: Avinash Lingamneni/Rice University/CSEM.

Researchers have unveiled an "inexact" computer chip that challenges the industry's 50-year pursuit of accuracy. The design improves power and resource efficiency by allowing for occasional errors. Prototypes unveiled this week at the ACM International Conference on Computing Frontiers in Cagliari, Italy, are at least 15 times more efficient than today's technology.

The research, which earned best-paper honors at the conference, was conducted by experts from Rice University in Houston, Singapore's Nanyang Technological University (NTU), Switzerland's Center for Electronics and Microtechnology (CSEM) and the University of California, Berkeley.

"It is exciting to see this technology in a working chip that we can measure and validate for the first time," said project leader Krishna Palem, who also serves as director of the Rice-NTU Institute for Sustainable and Applied Infodynamics (ISAID). "Our work since 2003 showed that significant gains were possible, and I am delighted that these working chips have met and even exceeded our expectations."

ISAID is working in partnership with CSEM to create new technology that will allow next-generation inexact microchips to use a fraction of the electricity of today's microprocessors.

"The paper received the highest peer-review evaluation of all the Computing Frontiers submissions this year," said Paolo Faraboschi, the program co-chair of the ACM Computing Frontiers conference and a distinguished technologist at Hewlett Packard Laboratories. "Research on approximate computation matches the forward-looking charter of Computing Frontiers well, and this work opens the door to interesting energy-efficiency opportunities of using inexact hardware together with traditional processing elements."

The concept is deceptively simple: Slash power use by allowing processing components - like hardware for adding and multiplying numbers - to make a few mistakes. By cleverly managing the probability of errors and limiting which calculations produce errors, the designers have found they can simultaneously cut energy demands and dramatically boost performance.

One example of the inexact design approach is "pruning," or trimming away some of the rarely used portions of digital circuits on a microchip. Another innovation, "confined voltage scaling," trades some performance gains by taking advantage of improvements in processing speed to further cut power demands.

In their initial simulated tests in 2011, the researchers showed that pruning some sections of traditionally designed microchips could boost performance in three ways: The pruned chips were twice as fast, used half as much energy and were half the size. In the new study, the team delved deeper and implemented their ideas in the processing elements on a prototype silicon chip.

"In the latest tests, we showed that pruning could cut energy demands 3.5 times with chips that deviated from the correct value by an average of 0.25 percent," said study co-author Avinash Lingamneni, a Rice graduate student. "When we factored in size and speed gains, these chips were 7.5 times more efficient than regular chips. Chips that got wrong answers with a larger deviation of about 8 percent were up to 15 times more efficient."

Project co-investigator Christian Enz, who leads the CSEM arm of the collaboration, said, "Particular types of applications can tolerate quite a bit of error. For example, the human eye has a built-in mechanism for error correction. We used inexact adders to process images and found that relative errors up to 0.54 percent were almost indiscernible, and relative errors as high as 7.5 percent still produced discernible images."

Palem, the Ken and Audrey Kennedy Professor of Computing at Rice, who holds a joint appointment at NTU, said likely initial applications for the pruning technology will be in application-specific processors, such as special-purpose "embedded" microchips like those used in hearing aids, cameras and other electronic devices.

The inexact hardware is also a key component of ISAID's I-slate educational tablet. The low-cost I-slate is designed for Indian classrooms with no electricity and too few teachers. Officials in India's Mahabubnagar District announced plans in March to adopt 50,000 I-slates into middle and high school classrooms over the next three years.

The hardware and graphic content for the I-slate are being developed in tandem. Pruned chips are expected to cut power requirements in half and allow the I-slate to run on solar power from small panels similar to those used on handheld calculators. Palem said the first I-slates and prototype hearing aids to contain pruned chips are expected by 2013.

.


Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Performance boost for microchips
Aachen, Germany (SPX) May 24, 2012
The semiconductor industry is faced with the challenge of supplying ever faster and more powerful chips. The Next-Generation Lithography with EUV radiation will help meeting that challenge. Fraunhofer researchers have developed key components. Flat computers, powerful cell phones and tablets - the integrated circuits, our computers' power centers, are becoming increasingly smaller and more ... read more


CHIP TECH
Maps of Miscanthus genome offer insight into grass evolution

Relative reference: Foxtail millet offers clues for assembling the switchgrass genome

Lawrence Livermore work may improve the efficiency of the biofuel production cycle

Discovery of plant proteins may boost agricultural yields and biofuel production

CHIP TECH
Navy pilot training enhanced by AEMASE 'smart machine' developed at Sandia Labs

Paralyzed individuals use thought-controlled robotic arm to reach and grasp

Paralysed woman's thoughts control a DLR robot

People with paralysis control robotic arms to reach and grasp using brain computer interface

CHIP TECH
US DoI Approves Ocotillo Express Wind Project

Opening Day Draws Close for Janneby Wind Testing Site

NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

CHIP TECH
Toyota overtakes GM, regains number one spot

Calif. passes 'self-driving' cars bill

Tesla to launch electric sedan in US on June 22

Tilting Cars On The Assembly Line: A New Angle On Protecting Autoworkers

CHIP TECH
Oil prices rise on EU Greece support, Iran impasse

Kurds' oil deal with Turkey will hit Iraq

Tokyo raises 1bn yen to buy China dispute islets

Philippines 'lacks sincerity' in sea dispute: China

CHIP TECH
Bulgaria switches reactor back on grid after repairs

Westinghouse, Burns and McDonnell And Electric Boat Collaborate

Nuclear Industry Taking It on the Chin in States Across US

Westinghouse And Ameren Missouri Announce Creation Of NexStart SMR Alliance

CHIP TECH
Goldman to plow $40 bn into green energy

Japan urges lower energy use amid shortage fears

A practical guide to green products and services

The quick and easy way to measure power consumption

CHIP TECH
Cambodian forest campaigners fight rampant logging

Brazil fights illegal logging to protect Amazon natives

UF study finds logging of tropical forests needn't devastate environment

Brazil's threatened Awa tribe outnumbered, group says




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement