Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Controlling friction by tuning van der Waals forces
by Staff Writers
Saarbrucken, Germany (SPX) Jul 22, 2013


File image.

For a car to accelerate there has to be friction between the tire and the surface of the road. The amount of friction generated depends on numerous factors, including the minute intermolecular forces acting between the two surfaces in contact - so-called van der Waals forces.

The importance of these intermolecular interactions in generating friction has long been known, but has now been demonstrated experimentally for the first time by a research team led by Physics Professor Karin Jacobs from Saarland University and Professor Roland Bennewitz from the Leibniz Institute for New Materials (INM).

Interestingly, the research team has shown that the friction acting at a material surface is influenced by the structure of the sub-surface layers.

Friction is an everyday phenomenon that is sometimes desirable (enabling cars to accelerate) and sometimes not (friction in the form of vehicle drag and friction in the engine and transmission system increase the car's energy consumption).

For many scientists and engineers, the ability to control friction is therefore right at the top of their wish list. A possible approach to controlling friction has just been published by researchers at Saarland University and INM. They have discovered that frictional force is affected by the composition of the materials beneath the surface.

The work carried out by the Saarbrucken scientists involved taking a closer look at the intermolecular forces acting between two materials. In order to be able to vary these forces, the researchers worked with polished, single-crystal silicon wafers.

"The wafers are covered with silicon dioxide layers of different thicknesses and are similar to those used in the semiconductor industry," explained Karin Jacobs, Professor of Experimental Physics at Saarland University.

Jacobs' team precisely measured the friction between silicon dioxide (SiO2) layers of different thicknesses and the 200-nm tip of an atomic force microscopy probe by carefully scanning the tip across the wafer surface.

What the physicists discovered was surprising: although the uppermost layer of the surface always consisted purely of SiO2, the tip of the atomic force microscope experienced different frictional forces depending on the thickness of the silicon dioxide layer. "The thinner the oxide layer, the greater the friction," said Jacobs.

The study found that the frictional forces associated with the wafers differed by as much as 30 per cent depending on the thickness of the SiO2 layer. The effect was also observed when the silicon wafers were covered with a water-repellent monolayer of silane molecules (long-chain hydrocarbons).

"The results of our study have significant implications for many practical applications," said Professor Jacobs. "As the strength of the van der Waals forces depends on the composition of a material to depths of up to 100 nanometres, carefully designing the layer structure at the surface of a material can reduce friction. This gives us another approach to controlling friction in addition to the established use of lubricants."

The results and a theoretical description of the research work are published in the prestigious journal Physical Review Letters. M. Lessel, P.Loskill, F. Hausen, N.N. Gosvami, R. Bennewitz, and K. Jacobs, 'Impact of van der Waals interactions on single asperity friction'. DOI: 10.1103/PhysRevLett.111.035502

.


Related Links
Saarland University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Magnets make droplets dance
Aalto, Finland (SPX) Jul 23, 2013
This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly. Researchers from Aalto University and Paris Tech have placed water droplets containing magnetic nanoparticles on strong water repellent surfaces and have made them align in various static and dynamic structures using periodically oscillating magnetic fields. This is the first ... read more


TECH SPACE
Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

Euro Parliament committee endorses cap on using crops for biofuels

TECH SPACE
Spain museum uses robot to help restore works

Chips that mimic the brain

Humanoid robot that could save people in disasters unveiled

Thin 'e-skin' could lead to more 'touchy-feely' robots

TECH SPACE
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

TECH SPACE
Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

EU largely backs France in German Mercedes row/

TECH SPACE
Greenhouse gas seen as clean source of electricity

Oil prices tumble on poor China data

Oil market under pressure from China demand fears

Now gas-rich Israel goes for oil in East Med

TECH SPACE
Paraguay upset over Argentine nuclear plant near border

Fukushima nuclear clean-up costs rise as steam seen again

Radioactive water leaked into sea at Fukushima: TEPCO

Australia minister calls for more uranium development

TECH SPACE
Americans continue to use more renewable energy sources

Sweden's Vattenfall hit by $4.6-bn charge as energy demand plunges

Six Tech Advancements Changing the Fossil Fuels Game

Free market is best way to combat climate change

TECH SPACE
Loss of African woodland may impact on climate

US debt deal helps Philippines save forests

Black Bears Return to Missouri Indicates Healthy Forests

Most flammable boreal forests in North America become more so




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement