Solar Energy News  
TIME AND SPACE
Cosmology Standard Candle Not So Standard After All

This image layout illustrates how NASA's Spitzer Space Telescope was able to show that a "standard candle" used to measure cosmological distances is shrinking - a finding that affects precise measurements of the age, size and expansion rate of our universe. The image on the left, taken by Spitzer in infrared light, shows Delta Cephei, a type of standard candle used to measure the distances to galaxies that are relatively close to us. Cepheids like this one are the first rungs on the so-called cosmological distance ladder - a tool needed to measure farther and farther distances.

Spitzer showed that the star has a bow shock in front of it. This can be seen as the red arc shape to the left of the star, which is depicted in blue-green (the colors have been assigned to specific infrared wavelengths we can't see with our eyes). The presence of the bow shock told astronomers that Delta Cephei must have a wind that is forming the shock. This wind is made up of gas and dust blowing off the star. Before this finding, there was no direct proof that Cepheid stars could lose mass, or shrink.
The diagram on the right illustrates how Delta Cephei's bow shock was formed. As the star speeds along through space, its wind hits interstellar gas and dust, causing it to pile up in the bow shock. A companion star to Delta Cephei, seen just below it, is lighting up the region, allowing Spitzer to better see the region. By examining the structure of the bow shock, astronomers were able to calculate how fast the star is losing mass.
In this image, infrared light captured by the infrared array camera is blue and blue-green (3.6- and 4.5-micron light is blue and 8.0-micron light is blue-green). Infrared light captured by the multiband imaging photometer is colored green and red (24-micron light is green and 70-micron light is red).
by Staff Writers
Pasadena CA (JPL) Jan 13, 2011
Astronomers have turned up the first direct proof that "standard candles" used to illuminate the size of the universe, termed Cepheids, shrink in mass, making them not quite as standard as once thought. The findings, made with NASA's Spitzer Space Telescope, will help astronomers make even more precise measurements of the size, age and expansion rate of our universe.

Standard candles are astronomical objects that make up the rungs of the so-called cosmic distance ladder, a tool for measuring the distances to farther and farther galaxies.

The ladder's first rung consists of pulsating stars called Cepheid variables, or Cepheids for short. Measurements of the distances to these stars from Earth are critical in making precise measurements of even more distant objects. Each rung on the ladder depends on the previous one, so without accurate Cepheid measurements, the whole cosmic distance ladder would come unhinged.

Now, new observations from Spitzer show that keeping this ladder secure requires even more careful attention to Cepheids. The telescope's infrared observations of one particular Cepheid provide the first direct evidence that these stars can lose mass-or essentially shrink. This could affect measurements of their distances.

"We have shown that these particular standard candles are slowly consumed by their wind," said Massimo Marengo of Iowa State University, Ames, Iowa, lead author of a recent study on the discovery appearing in the Astronomical Journal. "When using Cepheids as standard candles, we must be extra careful because, much like actual candles, they are consumed as they burn."

The star in the study is Delta Cephei, which is the namesake for the entire class of Cepheids. It was discovered in 1784 in the constellation Cepheus, or the King. Intermediate-mass stars can become Cepheids when they are middle-aged, pulsing with a regular beat that is related to how bright they are.

This unique trait allows astronomers to take the pulse of a Cepheid and figure out how bright it is intrinsically-or how bright it would be if you were right next to it. By measuring how bright the star appears in the sky, and comparing this to its intrinsic brightness, it can then be determined how far away it must be.

This calculation was famously performed by astronomer Edwin Hubble in 1924, leading to the revelation that our galaxy is just one of many in a vast cosmic sea. Cepheids also helped in the discovery that our universe is expanding and galaxies are drifting apart.

Cepheids have since become reliable rungs on the cosmic distance ladder, but mysteries about these standard candles remain. One question has been whether or not they lose mass.

Winds from a Cepheid star could blow off significant amounts of gas and dust, forming a dusty cocoon around the star that would affect how bright it appears. This, in turn, would affect calculations of its distance. Previous research had hinted at such mass loss, but more direct evidence was needed.

Marengo and his colleague used Spitzer's infrared vision to study the dust around Delta Cephei. This particular star is racing along through space at high speeds, pushing interstellar gas and dust into a bow shock up ahead.

Luckily for the scientists, a nearby companion star happens to be lighting the area, making the bow shock easier to see. By studying the size and structure of the shock, the team was able to show that a strong, massive wind from the star is pushing against the interstellar gas and dust.

In addition, the team calculated that this wind is up to one million times stronger than the wind blown by our sun. This proves that Delta Cephei is shrinking slightly.

Follow-up observations of other Cepheids conducted by the same team using Spitzer have shown that other Cepheids, up to 25 percent observed, are also losing mass.

"Everything crumbles in cosmology studies if you don't start up with the most precise measurements of Cepheids possible," said Pauline Barmby of the University of Western Ontario, Canada, lead author of the follow-up Cepheid study published online Jan. 6 in the Astronomical Journal. "This discovery will allow us to better understand these stars, and use them as ever more precise distance indicators."

Other authors of this study include N. R. Evans and G.G. Fazio of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; L.D. Matthews of Harvard-Smithsonian and the Massachusetts Institute of Technology Haystack Observatory, Westford; G. Bono of the Universita di Roma Tor Vergata and the INAF-Osservatorio Astronomico di Roma in Rome, Italy; D.L. Welch of the McMaster University, Ontario, Canada; M. Romaniello of the European Southern Observatory, Garching, Germany; D. Huelsman of Harvard-Smithsonian and University of Cincinnati, Ohio; and K. Y. L. Su of the University of Arizona, Tucson. The Spitzer observations were made before it ran out of its liquid coolant in May 2009 and began its warm mission.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Spitzer at CalTech
Spitzer at NASA
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TIME AND SPACE
So You Think You Can Solve A Cosmology Puzzle
Pasadena CA (JPL) Dec 07, 2010
Cosmologists have come up with a new way to solve their problems. They are inviting scientists, including those from totally unrelated fields, to participate in a grand competition. The idea is to spur outside interest in one of cosmology's trickiest problems - measuring the invisible dark matter and dark energy that permeate our universe. The results will help in the development of new sp ... read more







TIME AND SPACE
Study Estimates Land Available For Biofuel Crops

Pratt And Whitney Military Engines Power Biofuel Tests For USAF

Global biofuel land area estimated

Biofuel Grasslands Better For Birds Than Ethanol Staple Corn

TIME AND SPACE
Robotic ball a hit at electronics show

Robots massage, clean, and amuse at CES

Sugar And Spice

The 2011 FIRST Robotics Competition

TIME AND SPACE
China first in wind power capacity

Siemens, Dong, test new offshore turbines

Egypt to invite tenders for wind farms

Keenan 2 Wind Farm Commences Commercial Operation

TIME AND SPACE
Renault takes legal action over alleged spying

No Left Turn: 'Superstreet' Traffic Design Improves Travel Time, Safety

Japanese carmakers in push for hydrogen vehicles

16 dead, 23 hurt in China road accident

TIME AND SPACE
Coal industry fumes as US revokes mining permit

BP embarks upon Russian Arctic energy exploration deal

One percent of Tajikistan ceded to China: official

Azeri gas could save Nabucco, hurt Ukraine

TIME AND SPACE
New Research Shows How Light Can Control Electrical Properties Of Graphene

EPA to defer greenhouse gas permitting

Obama to regulate carbon from power plants

Romania in talks with Japan on trading carbon credits

TIME AND SPACE
Texan builds artful, green homes out of trash

Poll: Americans not as green

Security industry priority becomes law

Bjork's karaoke marathon boosts anti-takeover petition count

TIME AND SPACE
S.Leone minister orders illegal homes in wetlands destroyed

Indonesia president talks tough on forest destroyers

Canada invests Can$278 million in 'greener' paper

Predicting Tree Failures And Estimating Damage From Diseased Trees


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement