Solar Energy News  
TIME AND SPACE
Could vacuum physics be revealed by laser-driven microbubble?
by Staff Writers
Osaka, Japan (SPX) Jul 11, 2019

Comparison of the electrostatic fields between the 3D simulation and the model. The inset shows the proton distribution around the center (color-coded in accordance with the distance from the center).

A "vacuum" is generally thought to be nothing but empty space. But in fact, a vacuum is filled with "virtual particle-antiparticle pairs" of electrons and positrons that are continuously created and annihilated in unimaginably short time-scales.

The quest for a better understanding of vacuum physics will lead to the elucidation of fundamental questions in modern physics, which is integral in unravelling the mysteries of space exploration such as the Big Bang.

However, to forcibly separate the virtual pairs using a laser's electric field and cause them to appear not as virtual particles but real particles, the laser intensity required would be ten million times higher than what today's laser technology is capable of. This field intensity is the so-called "Schwinger limit", named a half century ago after the American Nobel laureate, Julian Schwinger.

Scientists at Osaka University discovered a novel mechanism which they refer to as microbubble implosion (MBI) in 2018. In MBI, super-high energy hydrogen ions (relativistic protons) are emitted at the moment when bubbles shrink to atomic size through the irradiation of hydrides with micron-sized spherical bubbles by ultraintense, ultrashort laser pulses.

In this study, the group led by Masakatsu Murakami confirmed that during MBI, an ultrahigh electrostatic field close to the Schwinger field could be achieved because micron-sized bubbles embedded in a solid hydride target implode to have nanometer-sized diameters upon ionization.

From the 3D simulations carried out at the Osaka University Institute of Laser Engineering, they also found that the density during the maximum compression of the bubble reaches several hundred thousand to one million times solid density.

At this density, something no larger than a lump sugar would weigh a few hundred kilograms. The energy density at the bubble center was found to be about one million times higher than that at the sun. These astonishing numbers have been thought to be impossible to achieve on Earth. Their research results were published in Physics of Plasmas.

Research paper


Related Links
Osaka University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Theoretical physicists unveil one of the most ubiquitous and elusive concepts in chemistry
Trieste, Italy (SPX) Jul 02, 2019
Even if we study them at school, oxidation numbers have so far eluded any rigorous quantum mechanical definition. A new SISSA study, published in Nature Physics, reverses this state of affairs by providing such a definition, based on the theory of topological quantum numbers, which was honoured with the 2016 Nobel prize in Physics awarded to Thouless, Haldane and Kosterlitz. This result, combined with recent advances in the theory of transport achieved at SISSA, paves the way to an accurate, yet t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Left out to dry: A more efficient way to harvest algae biomass

How to capture waste heat energy with improved polymers

Symbiotic upcycling: Turning 'low value' compounds into biomass

Total starts production at French biofuel refinery

TIME AND SPACE
Robot-ants that can jump, communicate with each other and work together

A squeaky clean: friendly robots spruce up Singapore

With Squad X, dismounted units partner with AI to dominate battlespace

Engineers design robot to pick iceberg lettuce

TIME AND SPACE
Stanford study shows how to improve production at wind farms

Windmill protesters placed on Dutch terror list

Can sound protect eagles from wind turbine collisions?

UK hits historic coal-free landmark

TIME AND SPACE
Barcelona mayor opens door to congestion charge

Ford, Volkswagen join forces on the new frontier of electric autos

From princes to undertakers, Norway's motorists go electric

Choking India gets first fully-fledged electric car

TIME AND SPACE
A new way to measure the stability of next-generation magnetic fusion devices

Tiny granules can help bring clean and abundant fusion power to Earth

Highview Power Unveils CRYOBattery, World's First Giga-Scale Cryogenic Battery

Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

TIME AND SPACE
IAEA head to step down next year on health grounds: diplomats

GE Hitachi Nuclear Energy awarded contract to support decommissioning of Oyster Creek

Get your fax right: Bungling officials spark Japan nuclear scare

Framatome receives DoE GAIN voucher to support development of Lightbridge Fuel

TIME AND SPACE
Global warming = more energy use = more warming

Big energy discussion 'scrubbed from record' at UN climate talks

New York to get one of world's most ambitious carbon reduction plans

Wartsila and Summit sign Bangladesh's biggest ever service agreement to maintain Summit's 464 MW power plants

TIME AND SPACE
The global tree restoration potential

Reforestation could cut carbon levels by two-thirds, study says

Gabon's timber industry reeling after corruption scandal

Loss of deep-soil water triggered forest die-off in Sierra Nevada









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.