![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Providence RI (SPX) Feb 17, 2020
A new study reveals good news for the possibility of using perovskite materials in next-generation solar cells. The study, published in the journal Acta Materialia, finds that though perovskite films tend to crack easily, those cracks are easily healed with some compression or a little bit of heat. That bodes well, the researchers say, for the use of inexpensive perovskites to replace or complement pricy silicon in solar cell technologies. "The efficiency of perovskite solar cells has grown very quickly and now rivals silicon in laboratory cells," said Nitin Padture, the Otis E. Randall Professor in Brown's School of Engineering and director of Brown's Institute for Molecular and Nanoscale Innovation. "Everybody's chasing high efficiency, which is important, but we also need to be thinking about things like long-term durability and mechanical reliability if we're going to bring this solar cell technology to the market. That's what this research was about." Perovskites, a broad class of crystalline materials, were first incorporated into solar cells in 2009. Those first perovskite solar cells had a power conversion efficiency of around 4%, but now that exceeds 25% - essentially the same as traditional silicon. The advantage of perovskite solar cells is that they can be made for a fraction of the cost of silicon, potentially cutting the cost of solar power installations. Perovskites can also be made into thin films that are semi-transparent and flexible, potentially clearing the way for energy-generating windows or for lightweight, flexible solar cells in tents or backpacks. But the low-cost and ease of making perovskite solar cells comes with a cost. "In material science, things that are easy to make also tend to be easy to break," said Padture who led the study. "That's certainly true of perovskites, which are quite brittle. But here we show they're also quite easy to fix - cracks in perovskite films can be healed by compressing them or with moderate heat." For the study, Srinivas Yadavalli, a doctoral student working in Padture's laboratory and the first author of the paper, deposited perovskite films on plastic substrates. He then bent the substrate to put tensile (pulling apart) stress on the perovskite film while using a scanning electron microscope (SEM) to detect cracks. Once the film was cracked, the researchers then bent the substrate in the opposite direction to see if compressive stress might heal those cracks. Sure enough, SEM imaging showed that the cracks had disappeared. To make sure the cracks were fully healed and not merely hidden, the researchers used a technique known as X-ray diffraction. By measuring the size of a material's atomic lattice, the technique can reveal whether a formerly cracked area is now able to carry a mechanical load - a surefire sign that the crack is healed. Those tests also indicated fully healed cracks. The researchers found that heat was just as effective in healing cracks. Temperatures around 100 degrees Celsius - quite modest heating by material science standards - were enough to completely heal cracks in perovskite films. Padture says that the research was aimed at better understanding the basic properties of perovskite materials, and more work needs be done to develop methods of applying this information in a commercial setting. But knowing that perovskite films are easily healed could be useful as these kinds of solar cells move toward commercialization. "It's good news," Padture said. "It suggests that fairly simple healing methods may help maintain performance in these kinds of solar cells."
![]() ![]() Oblique electrostatic inject-deposited TiO2 film leads efficient perovskite solar cells Kanazawa, Japan (SPX) Feb 11, 2020 The need to efficiently harvest solar energy for a more sustainable future is increasingly becoming accepted across the globe. A new family of solar cells based on perovskites - materials with a particular crystal structure - is now competing with conventional silicon materials to satisfy the demand in this area. Perovskite solar cells (PSCs) are continually being optimized to fulfill their commercial potential, and a team led by researchers from Kanazawa University has now reported a new and simp ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |