Subscribe free to our newsletters via your
. Solar Energy News .




WOOD PILE
Decoys could blunt spread of ash-killing beetles
by Staff Writers
University Park, PA (SPX) Feb 21, 2013


This is an emerald ash borer and decoy. Credit: Left, Michael J. Domingue; right, Drew P. Pulsifer, Penn State.

As the emerald ash borer ravages North American ash trees, threatening the trees' very survival, a team of entomologists and engineers may have found a way to prevent the spread of the pests.

Emerald ash borers (EABs), a type of beetle native to Asia, first appeared in the U.S. about 20 years ago. They are now moving east from Michigan, killing ash trees on the Eastern Seaboard as far south as North Carolina.

"Within 25 years, practically no ash trees may remain on either side of the St. Lawrence Seaway," said Akhlesh Lakhtakia, Charles Godfrey Binder Professor of Engineering Science and Mechanics at Penn State.

As their name implies, emerald ash borers are iridescent green. The beetles don't carry disease, but their larvae feed on the ash trees' sap, effectively killing the trees by depriving trees of their nourishment.

Thomas C. Baker, Distinguished Professor of Entomology at Penn State, knew that the male EAB locates a mate by flying over an ash tree, finding a female by identifying her green wings, which are folded over her back, and then dropping straight down onto her.

Baker and a post-doctoral fellow in his lab, Michael J. Domingue, were using dead female EABs for bait to trap the male beetles. Dead EAB decoys are not ideal for trapping, said Baker, because they are fragile and can sometimes disappear from the trap.

Baker then learned that Lakhtakia was able to replicate certain biological materials, such as fly eyes and butterfly wings. Baker posed the question: could Lakhtakia's technique visually replicate the unique female borer to create a better lure?

The two researchers, working with a graduate student in Lakhtakia's lab, Drew P. Pulsifer, created a mold of the top of the female beetle's body. The decoy beetle is made by a process of layering polymers with different refractive indexes to create the desired iridescence, and then stamping the resulting material into the mold. The researchers were able to create a color similar to the emerald ash borer's green wings by layering different types of polymer. Eventually they were able to find the right combination of polymers and number of layers in order to refract light and create a color similar to the beetle's own iridescent green. The researchers' findings are scheduled to be published in the April issue of the Journal of Bionic Engineering.

"Akhlesh's technique allows us to present males with different visual stimuli," said Baker, also a faculty member in the University's Huck Institutes of the Life Sciences. "We can manipulate more than that, but right now we are experimentally manipulating the visual decoy."

The researchers had planned a pilot test in central Pennsylvania, but were unable to carry it out due to unfavorable regional weather conditions. They also ran a pilot test in Hungary with a related beetle pest that bores into oak trees. The pilot in Hungary used two controls -- a dead EAB and a decoy made of the polymers, but not molded into the shape of a beetle -- and three types of stamped decoys: one lightly stamped, another with medium force and the final stamped heavily.

"The preliminary indication is that these stamped decoys were 40 percent better than recently dead females in luring and then trapping the males," said Lakhtakia.

The stamped decoys are relatively easy to mass produce, making them both easier to create and maintain and more successful at trapping males than dead female borers.

The purpose of the decoys is to trap the males so that populations of emerald ash borers can be detected in new locations quickly, paving the way for efficient use of other control methods, according to the researchers.

"This is a small dataset, but very encouraging," said Baker, who plans to test the decoys in the U.S. this summer.

Other members of the research team were Beverly G. Post, engineering science and mechanics undergraduate, Penn State; Mahesh S. Narkhede, plastics engineering graduate student and member of the Center for Advanced Materials, and Jayant Kumar, professor of physics and applied physics and director of the Center for Advanced Materials, both at University of Massachusetts Lowell; and Raul J. Martin-Palma, professor of applied physics, Universidad Autonomia de Madrid, Spain.

.


Related Links
Penn State
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WOOD PILE
Wetland trees a significant overlooked source of methane
Bristol UK (SPX) Feb 18, 2013
Wetlands are a well-established and prolific source of atmospheric methane. Yet despite an abundance of seething swamps and flooded forests in the tropics, ground-based measurements of methane have fallen well short of the quantities detected in tropical air by satellites. In 2011, Sunitha Pangala, a PhD student at The Open University, who is co-supervised by University of Bristol research ... read more


WOOD PILE
Avoiding virus dangers in 'domesticating' wild plants for biofuel use

U.S. grasslands losing to biofuel crops

What green algae are up to in the dark

Herty Advanced Materials Opens First New Pellet Mill

WOOD PILE
Robots with lift

Dry ice vacuum cleaner robot bound for Fukushima

Gas explosions enable soft robot to jump

Humans and robots work better together following cross-training

WOOD PILE
Spotting the invisible cracks in wind turbines

New framework for wind energy assessments

Gone with the wind: French scheme targets farting cows

Mainstream Renewable Power Starts Building Wind Farm in Chile

WOOD PILE
Estonia plugs electric cars as power prices soar

China's Geely to set up research centre in Sweden

Bridgestone reports soaring annual profit

Virtual vehicle vibrations

WOOD PILE
Catalyst Uses Use Iron To Split Hydrogen Gas And Make Electricity

Merkel cautious on 'fracking' in Germany

Troubled Baghdad scales back oil strategy

Chinese oil firm Addax targets Nigeria for growth

WOOD PILE
Reactor makers must share accident costs: Greenpeace

Taiwan opposition wants to scrap new nuclear plant

Northeast China has nuclear power

Roof collapses at Chernobyl nuclear plant: Ukraine

WOOD PILE
Thailand to face April energy crisis?

Cities can reduce greenhouse gas emissions by 70 percent

Bulgarians protest high energy costs

Genscape Announces Strategic Partnership with Murex to Create Supply of QAP-A RINS

WOOD PILE
Decoys could blunt spread of ash-killing beetles

Wetland trees a significant overlooked source of methane

Lungs of the planet reveal their true sensitivity to global warming

Southwest regional warming likely cause of pinyon pine cone decline




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement