Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
'Deep learning' makes search for exotic particles easier
by Staff Writers
Irvine CA (SPX) Jul 04, 2014


File image.

Fully automated "deep learning" by computers greatly improves the odds of discovering particles such as the Higgs boson, beating even veteran physicists' abilities, according to findings by UC Irvine researchers published in the journal Nature Communications.

"We are thrilled with the publication of our work," said co-author Pierre Baldi, Chancellor's Professor of computer science, "and even more so with the hope that deep learning may help solve fundamental open questions about the nature of matter, gravity and the origin of the universe."

Baldi, along with computer science Ph.D. student Peter Sadowski and associate professor of physics and astronomy Daniel Whiteson, found quicker, more efficient ways to analyze data obtained from particle accelerators/colliders to better detect rare particles.

The Higgs boson - first theorized in 1964 and whose existence was finally confirmed in 2012 at the massive, underground Large Hadron Collider near Geneva, Switzerland - could help explain why some particles have mass, among other primary questions of physics. Finding these particles requires sorting out relevant data from huge amounts of background noise; machine learning techniques are already used in analyzing these sets of "big data."

"Machine learning is a branch of computer science where, rather than computers being programmed to do a difficult task, computers learn automatically from examples," Baldi explained.

"It's very difficult to write from scratch a program that can recognize elephants in images - or Higgs bosons in collider data. But we can provide to the computer many examples of images with and without elephants, or accelerator data with and without Higgs bosons, and let the computer learn automatically from these examples."

Currently, physicists devise by hand mathematical formulas that they apply to the data to derive the features they're looking for, which are then fed to machine learning programs.

By employing recent advances in deep learning, in which computers learn automatically at multiple processing levels, the UCI team eliminated the need for the time-consuming manual creation of those formulas in the search for these fleeting particles - which don't even exist in our universe under normal conditions.

"These new, smarter deep learning networks have shown themselves to be better at finding hints of new particles than past machine learning methods - and than physicists with years of experience," Whiteson said. "They don't need any help from human insight, achieving a level of automatic learning which has been a long-standing goal in high-energy physics."

In computer experiments using carefully structured simulated data, the UCI researchers' methods resulted in a statistically significant 8 percent increase in the detection of these particles.

The techniques could be employed in experiments scheduled for 2015 at the Large Hadron Collider, Baldi said.

.


Related Links
University of California - Irvine
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Researchers Detect Smallest Force Ever Measured
Berkeley CA (SPX) Jul 01, 2014
What is believed to be the smallest force ever measured has been detected by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley. Using a combination of lasers and a unique optical trapping system that provides a cloud of ultracold atoms, the researchers measured a force of approximately 42 yoctonewtons. A yoctonewton is ... read more


TIME AND SPACE
A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

In Austria, heat is 'recycled' from the sewer

Genome could unlock eucalyptus potential for paper, fuel and fiber

TIME AND SPACE
Ask the crowd: Robots learn faster, better with online helpers

Collaborative learning -- for robots

IBM's Watson app whips up Big Data in the kitchen

Japan unveils 'world's first' android newscaster

TIME AND SPACE
OX2 acquires Polish wind power company, Greenfield Wind

VentAir Introduces Groundbreaking Wind Energy Innovation

Sixteen companies cleared for August wind energy auction in Maryland

Great progress on wind installations, Germany's RWE says

TIME AND SPACE
Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

NMSU PACE team develops mobile transportation device

Hybrid Vehicles More Fuel Efficient In India, China Than in US

TIME AND SPACE
New Look At Skyrmions Holds Promise For Spintronics

Scandlines hybrid electric ferries largest hybrid ferry fleet in the world

Study helps unlock mystery of high-temp superconductors

Cambridge team breaks superconductor world record

TIME AND SPACE
Japan city launches legal bid to halt reactor build

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

Improved method for isotope enrichment would better secure supplies

TIME AND SPACE
Green planning needed to maintain city buildings

GE taps China CEO to lead Alstom merger

Net energy analysis should become a standard policy tool

Malware aims at US, Europe energy sector: researchers

TIME AND SPACE
Maine officials say white pine fungus spreading

Incentives as effective as penalties for slowing Amazon deforestation

New study shows Indonesia's disastrous deforestation

Australian greens hail Tasmanian Wilderness decision




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.