Subscribe free to our newsletters via your
. Solar Energy News .




NANO TECH
Densest array of carbon nanotubes grown to date
by Staff Writers
Washington DC (SPX) Sep 24, 2013


Scanning electron microscope images are of CNT forests with low and high density. Credit: Hisashi Sugime/U.Cambridge.

Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density of tiny graphene cylinders needed for many microelectronics applications would be difficult.

Now a team from Cambridge University in England has devised a simple technique to increase the density of nanotube forests grown on conductive supports about five times over previous methods.

The high density nanotubes might one day replace some metal electronic components, leading to faster devices. The researchers report their finding in the journal Applied Physics Letters, which is produced by AIP Publishing.

"The high density aspect is often overlooked in many carbon nanotube growth processes, and is an unusual feature of our approach," says John Robertson, a professor in the electronic devices and materials group in the department of engineering at Cambridge.

High-density forests are necessary for certain applications of carbon nanotubes, like electronic interconnects and thermal interface materials, he says.

Robertson and his colleagues grew carbon nanotubes on a conductive copper surface that was coated with co-catalysts cobalt and molybdenum. In a novel approach, the researchers grew at lower temperature than is typical which is applicable in the semiconductor industry.

When the interaction of metals was analyzed by X-ray photoelectron spectroscopy, it revealed the creation of a more supportive substrate for the forests to root in. The subsequent nanotube growth exhibited the highest mass density reported so far.

"In microelectronics, this approach to growing high-density carbon nanotube forests on conductors can potentially replace and outperform the current copper-based interconnects in a future generation of devices," says Cambridge researcher Hisashi Sugime.

In the future, more robust carbon nanotube forests may also help improve thermal interface materials, battery electrodes, and supercapacitors.

The article, "Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports" by Hisashi Sugime, Santiago Esconjauregui, Junwei Yang, Lorenzo D'arsie, Rachel A. Oliver, Sunil Bhardwaj, Cinzia Cepek and John Robertson appears in the journal Applied Physics Letters.

.


Related Links
American Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Container's material properties affect the viscosity of water at the nanoscale
Atlanta GA (SPX) Sep 24, 2013
Water pours into a cup at about the same rate regardless of whether the water bottle is made of glass or plastic. But at nanometer-size scales for water and potentially other fluids, whether the container is made of glass or plastic does make a significant difference. A new study shows that in nanoscopic channels, the effective viscosity of water in channels made of glass can be twice as h ... read more


NANO TECH
Want wine with those biofuels? Why not, researchers ask

Duckweed as a cost-competitive raw material for biofuel

Algae Biofuel Can Cut CO2 Emissions by up to 68 Percent Compared to Petrol

Stanford scientists use 'wired microbes' to generate electricity from sewage

NANO TECH
Robots take over

A swarm on every desktop: Robotics experts learn from public

European researchers envision wearable exoskeleton for factory workers

Ultra-fast trading robots can send markets out of control

NANO TECH
Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

No evidence of residential property value impacts near US wind turbines

NANO TECH
AllCell's Self-Cooling 48V Micro-Hybrid Battery Solves Hot Parking Lot Problem

California's low-carbon fuel standard to stay

Innovative Auto Steering Device Could Save Lives

Bicycle built by Dutch students sets speed record of 83.13 mph

NANO TECH
Queensland coal projects a threat to water

Russia accuses Greenpeace activists of piracy

Leaders to discuss Japan importing Canada gas: reports

Shale pits environmental versus economic interests

NANO TECH
Iran to take control of Russian-built reactor 'Monday'

Iran assumes control of Bushehr nuclear plant

Japan PM Abe at Fukushima in PR push

Over 1,000 tons of Fukushima water dumped after typhoon

NANO TECH
Clean energy least costly to power America's electricity needs

Gemalto, others join to expand S. America smart metering

Canada keen on boosting energy exports to Japan

Switzerland leads in global energy ranking

NANO TECH
Tropical forests 'fix' themselves

Calcium key to restoring acid rain-damaged forests

Virginia Tech scientists show why traumatized trees don't 'bleed' to death

31 percent of timber, mining, agriculture concessions in 12 nations overlap with local land rights




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement