Solar Energy News  
TECH SPACE
Destruction Junction-What's Your Function?
by Staff Writers
Houston TX (SPX) Nov 22, 2016


Comparison of size of projectile to size of impact. Image courtesy NASA. For a larger version of this image please go here.

Traveling at 4.26 miles per second, a tiny aluminum sphere representing a piece of orbital debris, or "space junk," can be seen crashing into a spacecraft protective shield. This test and others like it were conducted to verify that this protective micrometeoroid and orbital debris shield is able to stop sufficiently large impacts. The impact generates what appears to be fire, but the assessment was conducted in a space-like vacuum, so there is no air or fuel. The brilliant, yellow flash is due to the momentary increase in material temperatures and associated glow.

Why is NASA's Johnson Space Center throwing everything, with the exception of the kitchen sink, at protective shields with the express purpose of impacting them? Well, space junk poses a serious risk to all spacecraft traveling near Earth. The International Space Station, located in low-Earth orbit, shares its small bit of space with approximately 2,700 tons of space junk.

The problem only increases at higher altitudes, with an additional 3,600 tons of space junk in geostationary orbit. Large enough to be tracked, there are more than 22,000 pieces of debris traveling around Earth right now. Even smaller debris, of which there is about 100,000,000 fragments larger than 0.04 inches, can create significant damage to a spacecraft due to their incredible speeds. The sequence of graphics on the right show the growing quantity of tracked space junk and operating spacecraft orbiting Earth over time.

The average impact of space junk on the space station is about 6 miles per second, but can reach speeds of up to 10 miles per second. In addition to space junk, the orbiting laboratory is impacted continuously by micrometeoroids traveling an average of 14 miles per second. This material can even reach speeds of up to 45 miles per second-a sobering prospect.

Impacts from space junk and micrometeoroids pose a risk to the International Space Station, as well as other space vehicles. Shield testing has helped produce and verify the performance of numerous protective shields on space station and other spacecraft.

The testing conducted by the Johnson's Hypervelocity Impact Technology (HVIT) team is essential to protecting both the spacecraft and crew. HVIT is located in Houston and coordinates hypervelocity testing performed primarily at the White Sands Test Facility in Las Cruces, New Mexico. Testing will continue through the month due to manufacturing and installation requirements.

Even small particle impacts can cause significant damage, so current tests that began late October can help verify new shield designs and improve the associated technology. For example, earlier testing and analysis demonstrated that multi-layered shields perform better than single-layer shields of the same areal mass.

This latest series of investigations were conducted on multi-layered shields, but the materials were arranged in a configuration not previously tried before. The tested shield (or a similar design) will be built, launched and installed on one of station's Passive Mating Adapters (PMAs) early next year. The PMA acts as one of the docking ports that allow visiting vehicles to dock to the space station. The shield will protect an area at the forward-base area of the adaptor, which recent risk analyses has shown to have higher than acceptable risk.

There is an entire science devoted to accessing the potential risk to spacecraft by micrometeoroids and orbital debris. Developing and testing spacecraft shield designs to reduce risk will be an ongoing process as the quantity of orbital debris around Earth increases.

This team of shield testers was founded more than 35 years ago. Since their inception, they have analyzed well over 10,000 impact experiments. These tests, which include computer simulation, have contributed to shield ballistic limit equations-or, the velocity needed for a particular projectile to penetrate a particular piece of material.

The International Space Station isn't the only beneficiary of this research. As we begin to explore deeper into the solar system, having high-impact shields for longer, more daunting trips will be at the top of the list of NASA's must-haves. Small teams-like Johnson's HVIT group-will help us punch through the barriers on the way to Mars.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technology at NASA
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
UK 'space junk' project highlights threat to missions
London (AFP) Nov 18, 2016
The mass of "space junk" orbiting the Earth poses a serious threat to future exploration, a British scientist said on Friday at the launch of a project to raise awareness of the issue. "Tackling the problem of space debris is one of humankind's greatest environmental challenges, but is also perhaps the one that is the least known," said Hugh Lewis, head of astronautics research at the Univer ... read more


TECH SPACE
UNIST researchers turn waste gas into road-ready diesel fuel

NextCoal to produce bio-coal for export to Japan, bio-oil for domestic use

New biofuel cell with energy storage

Bioelectronics at the speed of life

TECH SPACE
Researchers create living bio-hybrid system

New AI algorithm taught by humans learns beyond its training

Researchers question if banning of 'killer robots' actually will stop robots from killing

Crowd workers help robot keep conversation fresh

TECH SPACE
Owl-inspired wing design reduces wind turbine noise by 10 decibels

DONG Energy sets wind energy sights on Taiwan

Interior set to rule on future of BLM's Renewable Energy Program

Microsoft Corp. taps deeper into wind power

TECH SPACE
A novel catalyst design opens possibility to hydrogen vehicle

Five things to know about VW's 'dieselgate' scandal

How much attention do drivers need to pay

VW reaches 3.0-liter diesel agreement with EPA: report

TECH SPACE
Researchers report new thermoelectric material with high power factors

EAST achieves longest steady-state H-mode pperations

Glow-in-the-dark dye could fuel liquid-based batteries

First observations of tongue deformation of plasma

TECH SPACE
Breakthrough offers greater understanding of safe radioactive waste disposal

French power company EDF underestimating costs: study

Finnish client 'alarmed' by French nuclear industry overhaul

Time to tackle the UK's plutonium mountain

TECH SPACE
Study: LED lights draw fewer insects

Climate: Four nations map course to carbon-free economies

Shifting focus leaves mixed bag for German utility RWE

Deeper carbon cuts needed to avoid climate tragedy: UN

TECH SPACE
Remote Amazon tribe kills illegal gold miners: officials

Large forest die-offs can have effects that ricochet to distant ecosystems

Global boreal forests differ but not immune to climate change

Mangrove protection key to survival for Senegalese community









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.