Solar Energy News  
CHIP TECH
Devil in the defect detail of quantum emissions unravelled
by Staff Writers
Sydney, Australia (SPX) Nov 03, 2020

stock image only

Systems which can emit a stream of single photons, referred to as quantum light sources, are critical hardware components for emerging technologies such as quantum computing, the quantum internet, and quantum communications.

In many cases the ability to generate quantum light on-demand requires the manipulation and control of single atoms or molecules, pushing the limit of modern fabrication techniques, and making the development of these systems a cross-disciplinary challenge.

In new research, published in Nature Materials, an international multidisciplinary collaboration led by the University of Technology Sydney (UTS), has uncovered the chemical structure behind defects in white graphene (hexagonal boron nitride, hBN), a two dimensional nanomaterial that shows great promise as a platform for generating quantum light.

The defects, or crystal imperfections, can act as single photon sources and an understanding of their chemical structure is critical to being able to fabricate them in a controlled way.

"hBN single photon emitters display outstanding optical properties, among the best from any solid state material system, however, to make practical use of them we need to understand the nature of the defect and we have finally started to unravel this riddle," says UTS PhD candidate Noah Mendelson and first author of the study.

"Unfortunately, we cannot simply combine powerful techniques to visualize single atoms directly with quantum optics measurements, so obtaining this structural information is very challenging. Instead we attacked this problem from a different angle, by controlling the incorporation of dopants, like carbon, into hBN during growth and then directly comparing the optical properties for each, " he said.

To realise this comprehensive study, the team, led by Professor Igor Aharonovich, chief investigator of the UTS node of the ARC Centre of Excellence for Transformative Meta-Optical Materials (TMOS), turned to collaborators in Australia and around the world to provide the array of samples needed.

The researchers were able to observe, for the first time, a direct link between carbon incorporation into the hBN lattice and quantum emission.

"Determining the structure of material defects is an incredibly challenging problem and requires experts from many disciplines. This is not something we could have done within our group alone. Only by teaming up with collaborators from across the world whose expertise lies in different materials growth techniques could we study this issue comprehensively. Working together were we finally able to provide the clarity needed for the research community as a whole," said Professor Aharonovich.

"It was particularly exciting as this study was enabled by the new collaborative efforts with collaborators Dipankar Chugh, Hark Hoe Tan and Chennupati Jagadish from the TMOS node at the Australian National University, " he said.

The scientists also identified another intriguing feature in their study, that the defects carry spin, a fundamental quantum mechanical property, and a key element to encode and retrieve quantum information stored on single photons.

"Confirming these defects carry spin opens up exciting possibilities for future quantum sensing applications, specifically with atomically thin materials." Professor Aharonovich said.

The work brings to the forefront a novel research field, 2D quantum spintronics, and lays the groundwork for further studies into quantum light emission from hBN. The authors anticipate their work will stimulate increased interest in the field and facilitate a range of follow up experiments such as the generation of entangled photon pairs from hBN, detailed studies of the spin properties of the system, and theoretical confirmation of the defect structure.

"This is just the beginning, and we anticipate our findings will accelerate the deployment of hBN quantum emitters for a range of emerging technologies," concludes Mr. Mendelson.

Research paper


Related Links
University Of Technology Sydney
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
A new spin on atoms gives scientists a closer look at quantum weirdness
Princeton NJ (SPX) Nov 02, 2020
When atoms get extremely close, they develop intriguing interactions that could be harnessed to create new generations of computing and other technologies. These interactions in the realm of quantum physics have proven difficult to study experimentally due the basic limitations of optical microscopes. Now a team of Princeton researchers, led by Jeff Thompson, an assistant professor of electrical engineering, has developed a new way to control and measure atoms that are so close together no optical ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Bioenergy research team sequences miscanthus genome

Japan carbon pledge boosts hopes of ammonia backers

Making biodiesel from dirty old cooking oil just got way easier

Greasezilla Announces Plans to Launch Hub-and-Spoke Regional Systems for Biodiesel Manufacturers in 2021

CHIP TECH
"What to Expect When You're Expecting Robots"

Translating lost languages using machine learning

A global collaboration to move artificial intelligence principles to practice

Automated technology allows unparalleled space exploration from Moon, to asteroids, and beyond

CHIP TECH
California offshore winds show promise as power source

CHIP TECH
VW's Traton, Toyota's Hino agree electric truck venture

Charging electric cars up to 90% in 6 minutes

Used car exports drives pollution to developing world

Tesla to recall 30,000 cars from China over suspension defects

CHIP TECH
Predictive model reveals function of promising energy harvester device

Infrared light antenna powers molecular motor

Realistic simulation of plasma edge instabilities in tokamaks

Highview Power and Enlasa to develop giga-scale cryogenic energy storage projects in Latin America

CHIP TECH
Poland reviewing potential BWRX-300 Small Modular Reactor Project

Russian scientists suggested a transfer to safe nuclear energy

The new heavy isotope mendelevium-244 and a puzzling short-lived fission activity

Framatome launches Framatome Defense to support the French national defense industry

CHIP TECH
South Korea to seek carbon neutrality by 2050: Moon

Space to help build a green post-pandemic economy

Japan PM Suga sets 2050 deadline for carbon neutrality

Xi's big carbon promise on the table as China's leaders meet

CHIP TECH
US firms fund deforestation, abuses in Amazon: report

Evidence of biodiversity losses found deep inside the rainforest

In new German save-the-forest fight, migrant captain centre stage

NASA supercomputing study breaks ground for tree mapping, carbon research









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.