Solar Energy News  
TIME AND SPACE
Diamond quantum sensor detects "magnetic flow" excited by heat
by Staff Writers
Nomi, Japan (SPX) Jan 27, 2022

This image shows the interaction between N-V centers, the thermal magnon current, and the low-energy spin waves (coherent magnons).

In recent times, sustainable development has been the overarching guiding principle of research concerning environmental issues, energy crises, and information and communication technology. In this regard, spintronic devices have emerged as promising candidates for surpassing conventional technology, which has run into the problem of excess waste heat generation in miniaturized devices.

The electron "spin" responsible for the electric and magnetic property of a material are being used to develop next generation energy-efficient and miniature spintronic devices. At the heart of this new technology are "magnons," quanta of spin excitation waves, and their detection is key to further progress in this field. Recently, within the field of spintronics, devices based on the interaction between spin and heat flow have emerged as a potential candidate for new thermoelectric devices (devices which convert heat to electricity).

In the meantime, nitrogen-vacancy (N-V) centers in diamond, basically a point defect consisting of a nitrogen atom paired with an adjacent lattice vacancy, has emerged as a key for high-resolution quantum sensors. Interestingly, recently, it has been demonstrated that N-V centers can detect coherent magnon. However, detecting the thermally excited magnons by heat using N-V centers is difficult since the thermal magnons have much higher energy than the spin state of N-V centers, limiting their interaction.

Now in a collaborative study published in Physical Review Applied, Associate Professor Toshu An from Japan Advanced Institute of Science and Technology (JAIST) and Dwi Prananto, a PhD graduate from JAIST, along with researchers from Kyoto University, Japan, and the National Institute for Materials Science, Japan, have successfully detected these energetic magnons in yttrium iron garnet (YIG), a magnetic insulator, by using a quantum sensor based on diamond with NV centers.

To achieve this feat, the team used the interaction between coherent, low-energy magnons and N-V centers as an indirect way to detect the thermally excited magnons. As it turns out, the current produced by thermal magnons modifies the low-energy magnons by exerting a torque on them, which can be picked up by the N-V centers. Therefore, the method provides a way to detect thermal magnons by observing the changes in the coherent magnons.

To demonstrate this, the researchers set up a YIG garnet sample with two gold antennas placed at the ends of the sample's surface and placed a small diamond sensor at the center of the sample close to the surface. They then set up low-energy spin waves corresponding to the coherent magnons in the sample using microwaves and generated thermal magnons by producing a temperature gradient across the sample. Sure enough, the diamond sensor picked up on the changes to the coherent magnons caused by the induced thermal magnon current.

The ability to detect thermal magnons with N-V centers is particularly advantageous, as Dr. An explains: "Our study provides a detection tool for thermal magnon currents that can be placed locally and over a broad range of distances from spin waves. This is not possible with conventional techniques, which require a relatively large electrode and specific configurations with proximal distance to the spin waves."

These findings could not only open up new possibilities in quantum sensing but also pave the way for its integration with spin caloritronics. "Our work could lay the foundation for spintronic devices controlled by heat sources," says Dr. An.

Some very consequences to speculate, for sure!

Research Report: "Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond"


Related Links
Japan Advanced Institute of Science and Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists make first detection of exotic "X" particles in quark-gluon plasma
Boston MA (SPX) Jan 22, 2022
In the first millionths of a second after the Big Bang, the universe was a roiling, trillion-degree plasma of quarks and gluons - elementary particles that briefly glommed together in countless combinations before cooling and settling into more stable configurations to make the neutrons and protons of ordinary matter. In the chaos before cooling, a fraction of these quarks and gluons collided randomly to form short-lived "X" particles, so named for their mysterious, unknown structures. Today, X pa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
LSU chemists unlock the key to improving biofuel and biomaterial production

Getting hydrogen out of banana peels

Scientists build bioreactors and engineer bacteria to advance biofuel research

Creating sustainable material from waste

TIME AND SPACE
Kirigami robotic grippers are delicate enough to lift egg yolks

Enabling artificial intelligence on satellites

How robots learn to hike

Researchers teach a robotic arm to autonomously push and pick random objects

TIME AND SPACE
Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

'Ocean battery' targets renewable energy dilemma

TIME AND SPACE
Tesla reports record profit, sees more supply chain woes in 2022

Bentley says first luxury electric car due 2025

GM to spend $7 bn in Michigan to build electric auto capacity

Volkswagen hits 2021 EU emissions target after 2020 miss

TIME AND SPACE
Researchers achieve burning plasma regime for first time in lab

New experiment results bolster potential for self-sustaining fusion

First hydride superionic conductor developed, implications for sustainable energy

How a smart electric grid will power our future

TIME AND SPACE
Japan to help with Bill Gates' next-gen nuclear power project

Sweden approves plan to bury nuclear waste

The Future of SMRs and ARs: Off-Grid Market Applications

Britain injects 100m pounds into Sizewell C nuclear project

TIME AND SPACE
Risk appetite of banks for small merchant renewable energy plants remains low

EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

World risks more years of high energy prices, emissions: IEA

TIME AND SPACE
Future forests will have smaller trees and soak up less carbon, study suggests

More than 9,000 tree species still undiscovered: study

Penn State gets grant to teach private forest owners to adapt to climate change

Land battle awaits Indigenous communities over Indonesia capital relocation: NGO









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.