Solar Energy News  
TECH SPACE
Diamond quantum sensor reveals current flows in next-gen materials
by Staff Writers
Melbourne, Australia (SPX) Apr 27, 2017


Artist's impression of a diamond quantum sensor. Electrons are shown as red spheres, trailed by red threads that reveal their paths through graphene. Image courtesy David A. Broadway and cqc2t.org.

Researchers at the University of Melbourne are the first in the world to image how electrons move in two-dimensional graphene, a boost to the development of next-generation electronics.

Capable of imaging the behaviour of moving electrons in structures only one atom in thickness, the new technique overcomes significant limitations with existing methods for understanding electric currents in devices based on ultra-thin materials.

"Next-generation electronic devices based on ultra-thin materials, including quantum computers, will be especially vulnerable to contain minute cracks and defects that disrupt current flow," said Professor Lloyd Hollenberg, Deputy Director of the Centre for Quantum Computation and Communication Technology (CQC2T) and Thomas Baker Chair at the University of Melbourne.

A team led by Hollenberg used a special quantum probe based on an atomic-sized 'colour centre' found only in diamonds to image the flow of electric currents in graphene. The technique could be used to understand electron behaviour in a variety of new technologies.

"The ability to see how electric currents are affected by these imperfections will allow researchers to improve the reliability and performance of existing and emerging technologies. We are very excited by this result, which enables us to reveal the microscopic behaviour of current in quantum computing devices, graphene and other 2D materials," he said.

"Researchers at CQC2T have made great progress in atomic-scale fabrication of nanoelectronics in silicon for quantum computers. Like graphene sheets, these nanoelectronic structures are essentially one atom thick. The success of our new sensing technique means we have the potential to observe how electrons move in such structures and aid our future understanding of how quantum computers will operate."

In addition to understanding nanoelectronics that control quantum computers, the technique could be used with 2D materials to develop next generation electronics, energy storage (batteries), flexible displays and bio-chemical sensors.

"Our technique is powerful yet relatively simple to implement, which means it could be adopted by researchers and engineers from a wide range of disciplines," said lead author Dr Jean-Philippe Tetienne from CQC2T at the University of Melbourne.

"Using the magnetic field of moving electrons is an old idea in physics, but this is a novel implementation at the microscale with 21st Century applications."

The work was a collaboration between diamond-based quantum sensing and graphene researchers. Their complementary expertise was crucial to overcoming technical issues with combining diamond and graphene.

"No one has been able to see what is happening with electric currents in graphene before," said Nikolai Dontschuk, a graphene researcher at the University of Melbourne School of Physics.

"Building a device that combined graphene with the extremely sensitive nitrogen vacancy colour centre in diamond was challenging, but an important advantage of our approach is that it's non-invasive and robust - we don't disrupt the current by sensing it in this way," he said.

Tetienne explained how the team was able to use diamond to successfully image the current.

"Our method is to shine a green laser on the diamond, and see red light arising from the colour centre's response to an electron's magnetic field," he said.

"By analysing the intensity of the red light, we determine the magnetic field created by the electric current and are able to image it, and literally see the effect of material imperfections."

Research Report

TECH SPACE
A plastic-eating caterpillar
Washington DC (SPX) Apr 27, 2017
Generally speaking, plastic is incredibly resistant to breaking down. That's certainly true of the trillion polyethylene plastic bags that people use each and every year. But researchers reporting in Current Biology on April 24 may be on track to find a solution to plastic waste. The key is a caterpillar commonly known as a wax worm. "We have found that the larva of a common insect, Galler ... read more

Related Links
Centre for Quantum Computation and Communication Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Finding best combination for biofuel corn, soil protection

Fast, low energy, and continuous biofuel extraction from microalgae

Caterpillar found to eat shopping bags, suggesting biodegradable solution to plastic pollution

The Very Hungry Caterpillar joins fight against plastic pollution

TECH SPACE
Your future surgery may use an automated, robotic drill

Synthetic two-sided gecko's foot could enable underwater robotics

The rise of automated art

Human prejudices sneak into artificial intelligence systems

TECH SPACE
CEE Group acquires wind farm with a capacity of 27.6 megawatts in Brandenburg

U.S. wind power accelerating at near-record pace

Norwegian company envisions wind energy role for oil production

Oklahoma to end tax credits for wind energy

TECH SPACE
Bike-sharing launched in congested Beirut

China's Didi 'most valuable Asian start-up'; Uber exec demoted

Free rides offered by Alphabet's Waymo autonomous cars

Rideshare rivals Gett, Juno join forces

TECH SPACE
Bright future for self-charging batteries

Revolutionary method reveals impact of short circuits on battery safety

Thin layers of water hold promise for the energy storage of the future

Freezing lithium batteries may make them safer and bendable

TECH SPACE
Ukraine clings to nuclear power despite Chernobyl trauma

Court deals setback to South Africa's nuclear ambitions

Andra continues Areva contract to operate its Aube Surface Disposal Facility

The critical importance of Predictive Power when building NPPs

TECH SPACE
U.S. emissions generally lower last year

World Bank urges more investment for developing global electricity

US states begin legal action on Trump energy delay

Program to be axed saves energy in LA buildings

TECH SPACE
Long-term fate of tropical forests may not be as dire as believed

Deforestation from a tree's perspective at the TED conference

Scientists examine impact of high-severity fires on conifer forests

Primeval forest risks sparking new EU-Poland clash









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.