Subscribe free to our newsletters via your
. Solar Energy News .




MARSDAILY
Did Ancient Mars Have a Runaway Greenhouse?
by Charles Q. Choi for Astrobiology Magazine
Moffett Field CA (SPX) May 25, 2012


The southern rim of Argyre Planitia. Image Credit: NASA.

Cosmic impacts that once bombed Mars might have sent temperatures skyrocketing upward on the Red Planet in ancient times, enough to set warming of the surface on a runaway course, researchers say. According to scientists, these findings could potentially help explain how this cold, dry world might have once sustained liquid water, conditions potentially friendly for life.

The largest craters still visible on Mars were created about 3.7 billion to 4.1 billion years ago. For instance, the Argyre basin is thought to be 3.8 billion to 3.9 billion years old, a crater about 710 miles (1,140 kilometers) wide potentially generated by a comet or asteroid 60 to 120 miles (100 to 200 kilometers) in diameter.

The origin of these immense craters roughly coincides with when many branching Martian river valley networks apparently formed. The impact that created Argyre basin would have released an extraordinary amount of energy, far more than any bomb made by humanity, or even the meteor suspected of ending the Age of Dinosaurs - it would have been an explosion with an energy on the order of 10^26 joules, or 100 billion megatons of TNT. Altogether, scientists had calculated these giant collisions would have raised surface temperatures on Mars by hundreds of degrees.

Now these researchers find this heating might not have been fleeting. Instead, this warming might have gone on a runaway course, pushing Mars into a long-term stable warm state.

The idea of runaway warming is most commonly associated with Venus. Scientists think that planet's close proximity to the Sun heated its water, causing it to build up in its atmosphere as steam. Water is a greenhouse gas, trapping heat from the Sun that would have vaporized still more water, leading to a runaway greenhouse effect that apparently boiled all the oceans off Venus.

Ultraviolet light would have then eventually split this atmospheric water into hydrogen and oxygen - the hydrogen escaped into space, the oxygen became trapped in the rocks of the planet, and the end-result was a bone-dry Venus.

The researchers note the many giant impacts Mars experienced might have heated the planet enough to send vast amounts of the the greenhouse gases water and carbon dioxide into the air. Their computer models suggest that there might have been enough of these gas in the Martian atmosphere to trigger a long-lasting runaway greenhouse effect.

The impact that created the Argyre basin might have by itself been large enough to trigger such a chain reaction. Other impacts that might have pushed Mars toward a runaway greenhouse include the ones that created the Isidis and Hellas basins.

"Any terrestrial planet, including Venus, the Earth, or even exoplanets, may have experienced a temporary or permanent runaway greenhouse climate caused by impacts," researcher Teresa Segura, a planetary scientist at the commercial satellite firm Space Systems/Loral in Palo Alto, Calif., told Astrobiology Magazine. It is possible that any impacting comets might have delivered even more greenhouses gases into the atmosphere once they vaporized. Still, "the kinetic energy is of most importance," Segura said.

The researchers do note that during the runaway greenhouse phase, Mars would actually have been too warm for liquid water to last on its surface. Still, this heat would eventually subside - ultraviolet light would have caused the Martian atmosphere to lose its water just as Venus did, forcing the Red Planet to cool.

After runaway greenhouse conditions collapsed but before Mars became too cold for liquid water on its surface, the planet might have remained wet for a long time, possessing "a prolonged hydrological cycle with rainfall and valley networks as well as surface lakes," Segura said. It remains uncertain just how long either this runaway state or any wet period afterward might have lasted, but previous research suggests the warm climate may have lasted for at least centuries, she noted.

Future research could analyze the effects cosmic impacts might have on the climates of Venus, exoplanets and even Earth. Although impacts might very well be capable of causing a runaway greenhouse effect now, "the size of the impact required is much larger than that we need to worry about today," Segura said.

That is to say, if our planet was hit by an impact large enough to create the Argyre basin, there probably wouldn't be anyone on Earth left to worry about any of the collision's potential effects on climate.

Segura and her colleagues Christopher McKay and Owen Toon detailed their findings online May 2 in the journal Icarus.

.


Related Links
Astrobiology Magazine
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
NASA Showered with Bold New Concepts for Mars Exploration
Huntsville AL (SPX) May 25, 2012
NASA's call to scientists and engineers to help plan a new strategy to explore Mars has resulted in a flurry of unique and bold ideas, almost doubling the number of expected submissions. "This strong response sends a clear message that exploring Mars is important to future exploration," says John Grunsfeld, associate administrator for NASA's Science Mission Directorate at the agency's head ... read more


MARSDAILY
Maps of Miscanthus genome offer insight into grass evolution

Relative reference: Foxtail millet offers clues for assembling the switchgrass genome

Lawrence Livermore work may improve the efficiency of the biofuel production cycle

Discovery of plant proteins may boost agricultural yields and biofuel production

MARSDAILY
DLR presents innovations in robotics at AUTOMATICA 2012

Navy pilot training enhanced by AEMASE 'smart machine' developed at Sandia Labs

Paralyzed individuals use thought-controlled robotic arm to reach and grasp

Paralysed woman's thoughts control a DLR robot

MARSDAILY
Obama pushes for wind power tax credit

US DoI Approves Ocotillo Express Wind Project

Opening Day Draws Close for Janneby Wind Testing Site

NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

MARSDAILY
Ferrari recalls 56 cars in China: state media

Toyota overtakes GM, regains number one spot

Calif. passes 'self-driving' cars bill

Tesla to launch electric sedan in US on June 22

MARSDAILY
China welcomes resumption of Sudanese talks

US to welcome Philippine leader amid China tensions

Oil prices rise on EU Greece support, Iran impasse

Kurds' oil deal with Turkey will hit Iraq

MARSDAILY
Japan eyeing 15% nuclear in energy mix: minister

Bulgaria switches reactor back on grid after repairs

Westinghouse, Burns and McDonnell And Electric Boat Collaborate

Nuclear Industry Taking It on the Chin in States Across US

MARSDAILY
Critics pan Britain's draft energy bill

Goldman to plow $40 bn into green energy

Japan urges lower energy use amid shortage fears

A practical guide to green products and services

MARSDAILY
Brazil leader vetoes parts of law opening up Amazon

Rousseff under pressure to veto Brazil's new forest code

Indonesia's rapid deforestation continues?

Greenpeace blocks Brazil port over Amazon law




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement