Solar Energy News  
STELLAR CHEMISTRY
Discovery of an extragalactic hot molecular core
by Staff Writers
Sendai, Japan (SPX) Oct 12, 2016


Left: Distributions of molecular line emission from a hot molecular core in the Large Magellanic Cloud observed with ALMA. Emissions from dust, sulfur dioxide (SO2), nitric oxide (NO), and formaldehyde (H2CO) are shown as examples. Right: An infrared image of the surrounding star-forming region (based on the 8 micron data provided by the NASA/Spitzer Space Telescope). Image courtesy T. Shimonishi/Tohoku University, ALMA (ESO/NAOJ/NRAO). For a larger version of this image please go here.

Astronomers have discovered a 'hot molecular core,' a cocoon of molecules surrounding a newborn massive star, for the first time outside our Galaxy. The discovery, which marks the first important step for observational studies of extragalactic hot molecular cores and challenges the hidden chemical diversity of our universe, appears in a paper in The Astrophysical Journal Volume 827.

The scientists from Tohoku University, the University of Tokyo, the National Astronomical Observatory of Japan, and the University of Tsukuba, used the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to observe a newborn star located in the Large Magellanic Cloud, one of the closest neighbors of our Galaxy.

As a result, a number of radio emission lines from various molecular gas are detected, which indicates the presence of a hot molecular core associated with the observed newborn star.

The observations have revealed that the hot molecular core in the Large Magellanic Cloud shows significantly different chemical compositions as compared to similar objects in our Galaxy.

In particular, the results suggest that simple organic molecules such as methanol are deficient in this galaxy, suggesting a potential difficulty in producing large organic species indispensable for the birth of life.

The research team suggests that the unique galactic environment of the Large Magellanic Cloud affects the formation processes of molecules around a newborn star, and this results in the observed unique chemical compositions.

"This is the first detection of an extragalactic hot molecular core, and it demonstrates the great capability of new generation telescopes to study astrochemical phenomena beyond our Galaxy," said Dr. Takashi Shimonishi, an astronomer at Tohoku University, Japan, and the paper's lead author.

"The observations have suggested that the chemical compositions of materials that form stars and planets are much more diverse than we expected."

It is known that various complex organic molecules, which have a connection to prebiotic molecules formed in space, are detected from hot molecular cores in our Galaxy.

It is, however, not yet clear if such large and complex molecules exist in hot molecular cores in other galaxies. The newly discovered hot molecular core is an excellent target for such a study, and further observations of extragalactic hot molecular cores will shed light on the chemical complexities of our universe.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tohoku University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Are planets setting the sun's pace?
Dresden, Germany (SPX) Oct 06, 2016
The Sun's activity is determined by the Sun's magnetic field. Two combined effects are responsible for the latter: The omega and the alpha effect. Exactly where and how the alpha effect originates is currently unknown. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are putting forward a new theory for this in the journal Solar Physics. Their calculations suggest that tidal forces ... read more


STELLAR CHEMISTRY
Nano-spike catalysts convert carbon dioxide directly into ethanol

Engineers transform brewery wastewater into energy storage

Harnessing algae for the creation of clean energy

Organic semiconducting polymers can harvest sunlight to split CO2 into fuels

STELLAR CHEMISTRY
Anyone can chat with the White House... through a bot

Robot customs officers debut in South China ports

Tech giants race for edge in artificial intelligence

Soft robots that mimic human muscles

STELLAR CHEMISTRY
Wind turbines killing more than just local birds

Wind turbines a risk to birds living as far as 100 miles away

SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

STELLAR CHEMISTRY
China auto sales up fastest in 3 yrs; GM buys into car-sharing biz

Fractional order modeling may reduce electric car drivers' anxiety

Driverless cars hit British streets in landmark trial

Germany conducting inquiry into Tesla autopilot system

STELLAR CHEMISTRY
New 3D design for mobile microbatteries

Recharging on stable, amorphous silicon

New cost-effective silicon carbide high voltage switch created

Enhancing the superconducting properties of an iron-based material

STELLAR CHEMISTRY
Japan nuclear reactor shuttered for safety work

South Africa's nuclear programme kicked into touch, again

Deal signed for giant UK nuclear project

UN trims nuclear power growth forecasts

STELLAR CHEMISTRY
NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

STELLAR CHEMISTRY
Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests

Urban warming slows tree growth, photosynthesis

Emissions from logging debris in Africa may be vastly under estimated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.