Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Domain walls as new information storage medium
by Staff Writers
Mainz, Germany (SPX) Sep 25, 2013


Image of a ferromagnetic ring prepared using a scanning electron microscope: The magnetization (black/white contrast) runs along the ring and forms two domain walls.

While searching for ever smaller devices that can be used as data storage systems and novel sensors, physicists at Johannes Gutenberg University Mainz (JGU) have directly observed magnetization dynamics processes in magnetic nanowires and thus paved the way for further research in the field of nanomagnetism.

Small magnetic domain wall structures in nanowires can be used to store information and, for example, can be used as angle sensors. Initial applications based on magnetic domain walls have been developed and are already in use in sensor technology.

The current findings represent the first experimentally recorded direct imaging of predicted correlations between magnetic spin structure and wall velocity. The newly discovered properties could be used for other future applications in information technology.

Magnetic domains represent regions of uniform magnetization in ferromagnetic materials. Within each domain, the magnetization is aligned in a single direction. At the interface where domains of different magnetization direction meet, the magnetization has to rotate from one direction to another in a so-called domain wall.

At Mainz University, the group of Professor Mathias Klaui is studying the properties of magnetic domains and the dynamics of domains and domain walls in tiny rings on the nanoscale. It is possible to directly observe the motion of domain walls in these rings that have a diameter of some 4 micrometers and are made of permalloy, a soft nickel-iron alloy.

For this purpose, the Mainz physicists have been collaborating with scientists of the BESSY II synchrotron facility at the Helmholtz Center Berlin for Materials and Energy and the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory, Berkeley, USA, as well as with the Technical University of Berlin and the Max Planck Institute for Intelligent Systems in Stuttgart.

The researchers discovered that the velocity of the motion of domain walls is always oscillating.

"This is a new effect that could prove to be useful in the future," said Dr. Andre Bisig, lead author of the paper "Correlation between spin structure oscillations and domain wall velocities," which has recently been published in Nature Communications.

It was also found that the applied method is very effective in reliably moving the domain walls at very high velocities.

"The faster we move the domain wall, the easier it is to control it," said Bisig. Another observation concerns the effects associated with irregularities or defects in the nanowires. According to the results, these effects only become noticeable when domain walls are moving slowly. The faster a domain wall spins, the less relevant is the role played by defects in the material.

While theoretical research concerns itself principally with observing domain wall velocity and its correlation with oscillations in the spin structure, the results obtained also have important implications for applied research.

Domain wall-based sensors are already being used by Sensitec GmbH, Mainz, a cooperating partner of JGU and the Technical University of Kaiserslautern in two projects funded by the state of Rhineland-Palatinate: the Spintronics Technology Platform in Rhineland-Palatinate (STeP) and the Technology Transfer Service Center for New Materials (TT-DINEMA).

"Of particular importance is the fact that we observed unimpeded domain wall motion at high domain wall velocities. This represents highly promising potential for the use of these nanostructures in ultra-fast rotating sensors," added Professor Mathias Klaui.

The research being undertaken by Professor Klaui's team is being funded by an ERC Starting Grant and the Graduate School of Excellence Materials Science in Mainz (MAINZ). In addition, cooperation with Sensitec has resulted in access to a joint EU project involving seven other leading partners expected to start in October 2013 on "Controlling domain wall dynamics for functional devices". A. Bisig et al., Correlation between spin structure oscillations and domain wall velocities, Nature Communications, 4:2328, 27. August 2013.

.


Related Links
Johannes Gutenberg University Mainz
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New computational approaches speed up the exploration of the universe
Odense, Denamark (SPX) Sep 10, 2013
How many different molecules can be created when you release one of the universe's most reactive substances, hydrogen cyanide, in the lab? And will the process create some particularly interesting molecules? That is what scientists call a good question, because hydrogen cyanide seems to have played a role in creating some of life's building blocks. Hydrogen cyanide is an organic compound a ... read more


TECH SPACE
First look at complete sorghum genome may usher in new uses for food and fuel

First steps towards achieving better and cheaper biodiesel

Want wine with those biofuels? Why not, researchers ask

Duckweed as a cost-competitive raw material for biofuel

TECH SPACE
Robots take over

A swarm on every desktop: Robotics experts learn from public

European researchers envision wearable exoskeleton for factory workers

Ultra-fast trading robots can send markets out of control

TECH SPACE
Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

No evidence of residential property value impacts near US wind turbines

TECH SPACE
New steering tech for heavy equipment saves fuel, ups efficiency

AllCell's Self-Cooling 48V Micro-Hybrid Battery Solves Hot Parking Lot Problem

California's low-carbon fuel standard to stay

Innovative Auto Steering Device Could Save Lives

TECH SPACE
Queensland coal projects a threat to water

Russia accuses Greenpeace activists of piracy

Leaders to discuss Japan importing Canada gas: reports

Shale pits environmental versus economic interests

TECH SPACE
Iran to take control of Russian-built reactor 'Monday'

Iran assumes control of Bushehr nuclear plant

Japan PM Abe at Fukushima in PR push

Over 1,000 tons of Fukushima water dumped after typhoon

TECH SPACE
Clean energy least costly to power America's electricity needs

Gemalto, others join to expand S. America smart metering

Canada keen on boosting energy exports to Japan

Switzerland leads in global energy ranking

TECH SPACE
Tropical forests 'fix' themselves

Calcium key to restoring acid rain-damaged forests

Virginia Tech scientists show why traumatized trees don't 'bleed' to death

31 percent of timber, mining, agriculture concessions in 12 nations overlap with local land rights




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement