Solar Energy News  
TIME AND SPACE
Doubts about basic assumption for the universe
by Staff Writers
Bonn, Germany (SPX) Apr 09, 2020

The blue areas expand more slowly than expected, the yellow areas faster. In isotropy, the image would be monochromatic red.

No matter where we look, the same rules apply everywhere in space: countless calculations of astrophysics are based on this basic principle. A recent study by the Universities of Bonn and Harvard, however, has thrown this principle into question. Should the measured values be confirmed, this would toss many assumptions about the properties of the universe overboard. The results are published in the journal Astronomy and Astrophysics, but are already available online.

Since the big bang, the universe has swollen like a freshly formed raisin roll put in a warm place to rise. Until recently, it was thought that this increase in size was occurring evenly in all directions, as with a good yeast dough. Astrophysicists call this "isotropy". Many calculations on the fundamental properties of the universe are based on this assumption. It is possible that they are all wrong - or at least, inaccurate - thanks to compelling observations and analyses of the scientists from the Universities of Bonn and Harvard.

For they have put the isotropy hypothesis to the test for the first time with a new method that allows more reliable statements than before. With an unexpected result: According to this method, some areas in space expand faster than they should, while others expand more slowly than expected. "In any case, this conclusion is suggested by our measurements," states Konstantinos Migkas, from the Argelander Institute for Astronomy at the University of Bonn.

Migkas and his colleagues have developed a new, efficient isotropy test in their study. It is based on the observation of so-called galaxy clusters - in a sense, the raisins in the yeast bun. The clusters emit X-ray radiation that can be collected on Earth (in this case, this was done by the satellite-based telescopes Chandra and XMM-Newton). The temperature of the galaxy clusters can be calculated based on certain characteristics of the radiation. Also, their brightness can be measured. The hotter they are, the brighter they glow.

In an isotropic universe, a simple rule applies. The further away a celestial object is from us, the faster it moves away from us. From its speed, we can therefore deduce its distance from us, regardless of the direction in which the object lies. At least that's what we thought until now. "In reality, however, our brightness measurements seem to disagree with the above distance calculation," Migkas emphasizes.

This is because the amount of light that reaches the earth decreases with increasing distance. So, anyone who knows the original luminosity of a celestial body and its distance knows how bright it should shine in the telescope image. And it is precisely at this point that scientists have come across discrepancies that are difficult to reconcile with the isotropy hypothesis: that some galaxy clusters are much fainter than expected. Their distance from Earth is probably much greater than calculated from their speed. And for some others, however, the opposite is the case.

"There are only three possible explanations for this," states Migkas, who is doing his doctorate in the research group of Prof. Dr. Thomas Reiprich at the Argelander Institute. "Firstly, it is possible that the X-ray radiation, whose intensity we have measured, is attenuated on its way from the galaxy clusters to Earth. This could be due to as yet undiscovered gas or dust clouds inside or outside the Milky Way. In preliminary tests, however, we find this discrepancy between measurement and theory not only in X-rays but also at other wavelengths. It is extremely unlikely that any kind of matter nebula absorbs completely different types of radiation in the same way. But we won't know for sure for several months."

A second possibility are so-called "bulk flows". These are groups of neighboring galaxy clusters that move continuously in a certain direction - for example, due to some structures in space that generate strong gravitational forces. These would therefore attract the galaxy clusters to themselves and thus change their speed (and thus also their derived distance). "This effect would also mean that many calculations on the properties of the local universe would be imprecise and would have to be repeated," explains Migkas.

The third possibility is the most serious: What if the universe is not isotropic at all? What if - metaphorically speaking - the yeast in the galactic raisin roll is so unevenly distributed that it quickly bulges in some places while it hardly grows at all in other regions? Such an anisotropy could, for example, result from the properties of the mysterious "dark energy", which acts as an additional driving force for the expansion of the universe. However, a theory is still missing that would make the behavior of the Dark Energy consistent with the observations. "If we succeed in developing such a theory, it could greatly accelerate the search for the exact nature of this form of energy," Migkas is certain.

The current study is based on data from more than 800 galaxy clusters, 300 of which were analysed by the authors. The remaining clusters come from previously published studies. The analysis of the X-ray data alone was so demanding that it took several months. The new satellite-based eROSITA X-ray telescope is expected to record several thousand more galaxy clusters in the coming years. At the latest then it will become clear whether the isotropy hypothesis really has to be abandoned.

Research Report: "Probing cosmic isotropy with a new X-ray galaxy cluster sample through the L X - T scaling relation"


Related Links
University Of Bonn
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Discovery by UMass Lowell-led team challenges nuclear theory
Lowell MA (SPX) Apr 02, 2020
A discovery by a team of researchers led by UMass Lowell nuclear physicists could change how atoms are understood by scientists and help explain extreme phenomena in outer space. The breakthrough by the researchers revealed that a symmetry that exists within the core of the atom is not as fundamental as scientists have believed. The discovery sheds light on the forces at work within the atoms' nucleus, opening the door to a greater understanding of the universe. The findings were published in Natu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Making biofuels cheaper by putting plants to work

A novel biofuel system for hydrogen production from biomass

Recovering phosphorus from corn ethanol production can help reduce groundwater pollution

Deceptively simple process could boost plastics recycling

TIME AND SPACE
Autonomous Solutions and Phantom Auto Partner to Deploy Unmanned Yard Trucks

Crisis brings robots to medical frontline: researchers

Stanford engineers create shape-changing, free-roaming soft robot

Thai hospitals deploy 'ninja robots' to aid virus battle

TIME AND SPACE
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

TIME AND SPACE
System trains driverless cars in simulation before they hit the road

VW loses 'damning' dieselgate class lawsuit in UK

Tesla resumes work on German plant after court ruling

Renault says China, South Korea plants restarting after virus shutdown

TIME AND SPACE
Scientists tap unused energy source to power smart sensor networks

Scientists see energy gap modulations in a cuprate superconductor

How to get conductive gels to stick when wet

An all-organic proton battery energized for sustainable energy storage

TIME AND SPACE
Visual inspection in nuclear environments

Framatome earns high safety marks from US nuclear commission

Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Protests as Moscow moves to build road on radioactive dump

TIME AND SPACE
Uncertain climate future could disrupt energy systems

Smaller scale solutions needed for rapid progress towards emissions targets

Major new study charts course to net zero industrial emissions

Brussels not dropping Green Deal despite virus

TIME AND SPACE
Drylands to become more abundant, less productive due to climate change

Bushfires burned a fifth of Australia's forest: study

The young Brazilians fighting for the Amazon

Indigenous leader murdered in Amazon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.