Solar Energy News  
ROBO SPACE
Drexel research helps bacteria-powered microrobots plot a course
by Staff Writers
Philadelphia PA (SPX) Mar 21, 2016


Drexel researchers have developed a method for using electric fields to help microscopic bacteria-powered microrobots detect obstacles in their environment and navigate around them to get to their destination. Image courtesy Drexel University. Watch a video on the research here.

The problem with having a microscopic robot propelled by a horde of tail-flailing bacteria is you never know where it's going to end up. The tiny, bio-robots, which amount to a chip coated with a "carpet" of flagellated bacteria, emerged from the primordial ooze of microrobotics research a few years ago as a concept for building microscopic devices and delivering medication at the cellular level.

But as with any robot, the challenge for making them useful is bridging the gap from movement to automation. A team of engineers at Drexel University might have done just that, according to research recently published in IEEE Transactions on Robotics about using electric fields to direct the robots in a fluid environment.

In a follow-up to a 2014 report that presented a way to use the flagellated bacteria Serratia marcescens and an electric field to make a microrobot mobile, MinJun Kim, PhD, a professor in the College of Engineering and director of Drexel's Biological Actuation, Sensing and Transport (BAST) Lab, is now offering a method for making them agile.

"What's a ship without a captain? We know electric fields can be used to push the microrobots in any direction, like a boat carried by the ocean's currents, but in this paper we're exploring how those same fields can be used to help the robot detect obstacles and navigate around them," Kim said.

The key to both motion and navigation for the tiny hybrid robots is S. marcescens bacterium. These rod-shaped swimmers, who are known culprits of urinary tract and respiratory infections in hospitals, naturally possess a negative charge, which means they can be manipulated across an electric field as if they were pixels in an etch-a-sketch.

When a slimy smear of the bacteria is applied to a substrate, in this case a square chip of photosensitive material called SU-8, you get a negatively charged microrobot that can move around in a fluid by riding the waves of an electric field.

The bacteria's whip-like flagella help keep the robot suspended in the fluid environment while also providing a small bit of forward propulsion. The real push comes from two perpendicular electric fields that turn the fluid into an electrified grid. Since the bacteria are negatively charged, the team can manipulate the robots simply by adjusting the strength of the current.

"We have shown that we can manually direct the robots or give it a set of coordinates to get it from point A to point B, but our goal in this research is to enable the microrobots to navigate a course with random impediments blocking its way," Kim said. "This requires a level of automation that has not previously been achieved in hybrid microrobotics research."

Kim's group met this goal by making a control algorithm that enables the tiny robots to effectively use the shape of the electric field they're riding as a way to detect and avoid obstacles - like a surfer reading the waves' break to steer clear of submerged hazards.

By running a series of tests using charged particles, the team came to understand how the electric field changed when it encountered insulator objects.

"The electric field was distorted near the corners of the obstacle," the authors write. "Particles that passed by the first corner of the obstacles also had affected trajectories even though they had a clear space ahead to pass; this is due to the distorted electric field."

They used this deformation in the field as input data for their steering algorithm. So when the robot senses a change in the pattern of the field the algorithm automatically adjusts its path of to dodge the obstacle. In this way, the robots are using electric fields both as a mode of transportation and as a means of navigation.

In addition to the electric field information, the algorithm also uses image-tracking from a microscope-mounted camera to locate the initial starting point of the robot and its ultimate destination.

"With this level of control and input from the environment we can program the microrobot to make a series of value judgments during its journey that affect its path," Kim said.

"If for instance we want the robot to avoid as many obstacles as possible, regardless of the distance traveled. Or we could set it to take the most direct, shortest route to the destination - even if it's through the obstacles. This relative autonomy is an important step for microrobots if we're going to one day put them into a complex system and ask them to perform a task like delivering medication or building a microstructure."

The next step for Kim's lab is to develop a system consisting of multiple bacteria-powered microrobots that is able to perform manipulation of multiple live cells in vitro. Such a system could have several applications, including stem cell manipulation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Drexel University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Less than meets the eye
Rehovot, Israel (SPX) Mar 18, 2016
We do not merely recognize objects - our brain is so good at this task that we can automatically supply the concept of a cup when shown a photo of a curved handle or identify a face from just an ear or nose. Neurobiologists, computer scientists, and robotics engineers are all interested in understanding how such recognition works - in both human and computer vision systems. New research by ... read more


ROBO SPACE
Growing Pure Algae 24 7 and Without Sunlight

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Fuel or food? Study sees increasing competition for land, water resources

ROBO SPACE
Domino's to trial robots for pizza delivery

Hollywood robots: Movie machines may boost robot acceptance

Super elastic electroluminescent 'skin' will soon create mood robots

Amputee feels texture with a bionic fingertip

ROBO SPACE
Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

Norway's Statoil makes U.S. wind energy bet

ROBO SPACE
US unveils emergency braking deal with automakers

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

GM, Lyft launch car rental program for drivers

ROBO SPACE
Catalyst fabrication method may boost fuel cell development

JLM Energy launches energy storage system Energizr 200

Creation of Jupiter interior, a step towards room temp superconductivity

Converting atmospheric carbon dioxide into batteries

ROBO SPACE
France says will recapitalise energy giant EDF 'if there's a need'

Japan to send plutonium cache to US this weekend

Russian Scientists Suggest New 'Nuclear Battery' Concept

Czech power group CEZ profit down on drop in prices, nuclear output

ROBO SPACE
Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

ROBO SPACE
CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

US joins Honduran probe of environmentalist's murder









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.