Solar Energy News  
IRON AND ICE
Dwarf planet Vesta a window to the early solar system
by Andy Fell UCD News
Davis CA (SPX) Oct 07, 2021

Precise measurements of oxygen and chromium isotopes allow UC Davis researchers to identify meteorites NWA12217, 12562 and 12319 as coming from Vesta.

The dwarf planet Vesta is helping scientists better understand the earliest era in the formation of our solar system. Two recent papers involving scientists from the University of California, Davis, use data from meteorites derived from Vesta to resolve the "missing mantle problem" and push back our knowledge of the solar system to just a couple of million years after it began to form. The papers were published in Nature Communications Sept. 14 and Nature Astronomy Sept. 30.

Vesta is the second-largest body in the asteroid belt at 500 kilometers across. It's big enough to have evolved in the same way as rocky, terrestrial bodies like the Earth, moon and Mars. Early on, these were balls of molten rock heated by collisions. Iron and the siderophiles, or 'iron-loving' elements such as rhenium, osmium, iridium, platinum and palladium sank to the center to form a metallic core, leaving the mantle poor in these elements. As the planet cooled, a thin solid crust formed over the mantle. Later, meteorites brought iron and other elements to the crust.

Most of the bulk of a planet like Earth is mantle. But mantle-type rocks are rare among asteroids and meteorites.

"If we look at meteorites, we have core material, we have crust, but we don't see mantle," said Qing-Zhu Yin, professor of earth and planetary sciences in the UC Davis College of Letters and Science. Planetary scientists have called this the "missing mantle problem."

In the recent Nature Communications paper, Yin and UC Davis graduate students Supratim Dey and Audrey Miller worked with first author Zoltan Vaci at the University of New Mexico to describe three recently discovered meteorites that do include mantle rock, called ultramafics that include mineral olivine as a major component. The UC Davis team contributed precise analysis of isotopes, creating a fingerprint that allowed them to identify the meteorites as coming from Vesta or a very similar body.

"This is the first time we've been able to sample the mantle of Vesta," Yin said. NASA's Dawn mission remotely observed rocks from the largest south pole impact crater on Vesta in 2011 but did not find mantle rock.

Probing the early solar system
Because it is so small, Vesta formed a solid crust long before larger bodies like the Earth, moon and Mars. So the siderophile elements that accumulated in its crust and mantle form a record of the very early solar system after core formation. Over time, collisions have broken pieces off Vesta that sometimes fall to Earth as meteorites.

Yin's lab at UC Davis had previously collaborated with an international team looking at elements in lunar crust to probe the early solar system. In the second paper, published in Nature Astronomy, Meng-Hua Zhu at the Macau University of Science and Technology, Yin and colleagues extended this work using Vesta.

"Because Vesta formed very early, it's a good template to look at the entire history of the Solar System," Yin said. "This pushes us back to two million years after the beginning of solar system formation."

It had been thought that Vesta and the larger inner planets could have got much of their material from the asteroid belt. But a key finding from the study was that the inner planets (Mercury, Venus, Earth and moon, Mars and inner dwarf planets) got most of their mass from colliding and merging with other large, molten bodies early in the solar system. The asteroid belt itself represents the leftover material of planet formation, but did not contribute much to the larger worlds.

Research Report: Olivine-rich achondrites from Vesta and the missing mantle problem


Related Links
University of California - Davis
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Late-time small-body disruptions can protect the Earth
Livermore CA (SPX) Oct 07, 2021
If an asteroid is determined to be on an Earth-impacting trajectory, scientists typically want to stage a deflection, where the asteroid is gently nudged by a relatively small change in velocity, while keeping the bulk of the asteroid together. A kinetic impactor or a standoff nuclear explosion can achieve a deflection. However, if the warning time is too short to stage a successful deflection, another option is to couple a lot of energy to the asteroid and break it up into many well-dispersed fra ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Biofilters designed for space convert liquid manure into high-quality fertilisers

Crucial step identified in the conversion of biomass to methane

S-92 helicopter completes first flight using biofuel

Researchers want to breed a sorghum variety that captures more carbon

IRON AND ICE
Singapore patrol robots stoke fears of surveillance state

Surgical robot with DLR technology on the market

Blockchain technology could provide secure communications for robot teams

A robot that finds lost items

IRON AND ICE
US unveils plans for seven major offshore wind farms

From oil to renewables, winds of change blow on Scottish islands

From oil to renewables, winds of change blow on Scottish islands

Large wind farms cause different effects for local and regional climates

IRON AND ICE
Auto sector shifts gear towards recycling parts, batteries

Lebanon's car culture questioned in crisis

Volvo sets IPO for Oct 28, valuing it up to $23 bn

Volvo Cars announces IPO to raise nearly $2.9 billion

IRON AND ICE
Induced flaws in quantum materials could enhance superconducting properties

UCLA bioengineers develop new class of human-powered bioelectronics

A new solid-state battery surprises the researchers who created it

Now everyone can build battery-free electronic devices

IRON AND ICE
EDF offers to build up to 6 nuclear reactors in Poland

UK seeks to oust China from Sizewell nuclear plant: FT

Potential Deployment of BWRX-300 Small Modular Reactors in Poland

Augmented reality for testing nuclear components

IRON AND ICE
UK's Johnson outlines 30,000 green jobs boost

Hard choices loom for finance chiefs and their climate pledges

Rio Tinto says to 'halve' emissions by 2030

Google lets users factor climate change into life

IRON AND ICE
Ashes from Amazon transformed into city mural to raise climate awareness

Brazil, Colombia 'united' in defense of Amazon ahead of UN summit

First European map of the insulating effect of forests

Australia's Daintree rainforest returned to Indigenous owners









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.