Solar Energy News
PHYSICS NEWS
Dying stars' cocoons could be new source of gravitational waves
As a jet escapes from a collapsed star, it punches into a cocoon of stellar debris.
Dying stars' cocoons could be new source of gravitational waves
by Staff Writers
Evanston IL (SPX) Jun 06, 2023

So far, astrophysicists have only detected gravitational waves from binary systems - the mergers of either two black holes, two neutron stars or one of each. Although astrophysicists theoretically should be able to detect gravitational waves from a single, non-binary source, they have yet to uncover these elusive signals.

Now Northwestern University researchers suggest looking at a new, unexpected and entirely unexplored place: The turbulent, energetic cocoons of debris that surround dying massive stars.

For the first time ever, the researchers have used state-of-the-art simulations to show that these cocoons can emit gravitational waves. And, unlike gamma-ray burst jets, cocoons' gravitational waves should be within the frequency band that the Laser Interferometer Gravitational-Wave Observatory (LIGO) can detect.

"As of today, LIGO has only detected gravitational waves from binary systems, but one day it will detect the first non-binary source of gravitational waves," said Northwestern's Ore Gottlieb, who led the study. "Cocoons are one of the first places we should look to for this type of source."

Gottlieb will present this research during a virtual press briefing at the 242nd meeting of the American Astronomical Society. "Jetted and turbulent stellar deaths: New LIGO-detectable sources of gravitational waves" will take place at 12:15 p.m. EDT on Monday, June 5, as a part of a session on "Discoveries in Distant Galaxies." Members of the press can register to attend virtually or in person.

Gottlieb is a CIERA Fellow at Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Northwestern co-authors of the study include professors Vicky Kalogera and Alexander Tchekovskoy, postdoctoral associates Sharan Banagiri and Jonatan Jacquemin-Ide and graduate student Nick Kaaz.

New source was 'impossible to ignore'
To conduct the study, Gottlieb and his collaborators used new state-of-the-art simulations to model the collapse of a massive star. When massive stars collapse into black holes, they may create powerful outflows (or jets) of particles traveling close to the speed of light. Gottlieb's simulations modeled this process - from the time the star collapses into a black hole until the jet escapes.

Initially, he wanted to see whether or not the accretion disk that forms around a black hole could emit detectable gravitational waves. But something unexpected kept emerging from his data.

"When I calculated the gravitational waves from the vicinity of the black hole, I found another source disrupting my calculations - the cocoon," Gottlieb said. "I tried to ignore it. But I found it was impossible to ignore. Then I realized the cocoon was an interesting gravitational wave source."

As jets collide into collapsing layers of the dying star, a bubble, or a "cocoon," forms around the jet. Cocoons are turbulent places, where hot gases and debris mix randomly and expand in all directions from the jet. As the energetic bubble accelerates from the jet, it perturbs space-time to create a ripple of gravitational waves, Gottlieb explained.

"A jet starts deep inside of a star and then drills its way out to escape," Gottlieb said. "It's like when you drill a hole into a wall. The spinning drill bit hits the wall and debris spills out of the wall. The drill bit gives that material energy. Similarly, the jet punches through the star, causing the star's material to heat up and spill out. This debris forms the hot layers of a cocoon."

Call to action to look at cocoons
If cocoons do generate gravitational waves, then LIGO should be able to detect them in its upcoming runs, Gottlieb said. Researchers have typically searched for single-source gravitational waves from gamma-ray bursts or supernovae, but astrophysicists doubt that LIGO could detect those.

"Both jets and supernovae are very energetic explosions," Gottlieb said. "But we can only detect gravitational waves from higher frequency, asymmetrical explosions. Supernovae are rather spherical and symmetrical, so spherical explosions do not change the balanced mass distribution in the star to emit gravitational waves. Gamma-ray bursts last dozens of seconds, so the frequency is very small - lower than the frequency band that LIGO is sensitive to."

Instead, Gottlieb asks astrophysicists to redirect their attention to cocoons, which are both asymmetrical and highly energetic.

"Our study is a call to action to the community to look at cocoons as a source of gravitational waves," he said. "We also know cocoons to emit electromagnetic radiation, so they could be multi-messenger events. By studying them, we could learn more about what happens in the innermost part of stars, the properties of jets and their prevalence in stellar explosions."

Research Report:"Jetted and turbulent stellar deaths: New LVK-detectable gravitational wave sources"

Related Links
Northwestern University
The Physics of Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
PHYSICS NEWS
Frying Food in Space: A New Frontier in Astronaut Culinary Experience
Paris (ESA) Jun 02, 2023
The dietary regimen of astronauts is a crucial aspect of space missions that impacts overall health and morale. The European Space Agency (ESA) has been funding research on cooking techniques in microgravity conditions, with a recent focus on frying food, a worldwide culinary method with intricate physics and chemistry at play. In a breakthrough for future lunar and Martian missions, the research has suggested that a beloved comfort food, fries, may be feasible to prepare even in outer space. ... read more

PHYSICS NEWS
EU probes alleged fraudulent biofuel from China

E-fuels - DLR selects Leuna as location for its PtL technology platform

WVU researcher searching for 'holy grail' of sustainable bioenergy

New catalyst transforms carbon dioxide into sustainable byproduct

PHYSICS NEWS
'AI doctor' better at predicting patient outcomes, including death

Human extinction threat 'overblown' says AI sage Marcus

Sponge makes robotic device a soft touch

UK to host world's first AI summit: PM Sunak

PHYSICS NEWS
Brazil faces dilemma: endangered macaw vs. wind farm

Spire to provide TrueOcean with weather forecasts for offshore wind farm development

Sweden greenlights two offshore windpower farms

European leaders vow to boost North Sea wind energy production

PHYSICS NEWS
GM reaches deal for access to Tesla's North American chargers

Musk, China industry minister hold talks on 'new energy vehicles': ministry

Tesla's Musk hails China's 'vitality' on Beijing visit

Elon Musk says wants to expand China business in FM meeting

PHYSICS NEWS
Turning up the heat

Zap Energy charts roadmap for measuring fusion gain

Tiny quantum electronic vortexes can circulate in superconductors

DOE award to Zap Energy for fusion pilot plant design

PHYSICS NEWS
Ukraine nuke plant safe for now after dam break: IAEA

France says nuclear power is 'non-negotiable'

Shares of renationalised French power firm EDF delisted

Reservoir water still cooling Ukraine nuclear plant near destroyed dam: IAEA

PHYSICS NEWS
Thailand cuts power to Chinese-backed casino complex in Myanmar

Energy efficiency investments need to triple: IEA

Ukraine asks Europe to double electricity supplies

675 million people worldwide without electricity: report

PHYSICS NEWS
Lula leads tributes on anniversary of Amazon double murder

Brazilian Amazon deforestation falls 31% under Lula

In Ecuador biosphere, battle lines form over mining plans

Widow urges care for Amazon on anniversary of double murder

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.