Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Einstein saves the quantum cat
by Staff Writers
Vienna, Austria (SPX) Jun 17, 2015


This is an illustration of a molecule in the presence of gravitational time dilation. The molecule is in a quantum superposition of being in several places at the same time, but time dilation destroys this quantum phenomenon. Image courtesy Igor Pikovski, Harvard-Smithsonian Center for Astrophysics. For a larger version of this image please go here.

In 1915 Albert Einstein formulated the theory of general relativity which fundamentally changed our understanding of gravity. He explained gravity as the manifestation of the curvature of space and time. Einstein's theory predicts that the flow of time is altered by mass. This effect, known as "gravitational time dilation", causes time to be slowed down near a massive object.

It affects everything and everybody; in fact, people working on the ground floor will age slower than their colleagues a floor above, by about 10 nanoseconds in one year. This tiny effect has actually been confirmed in many experiments with very precise clocks.

Now, a team of researchers from the University of Vienna, Harvard University and the University of Queensland have discovered that the slowing down of time can explain another perplexing phenomenon: the transition from quantum behavior to our classical, everyday world.

How gravity suppresses quantum behavior
Quantum theory, the other major discovery in physics in the early 20th century, predicts that the fundamental building blocks of nature show fascinating and mind-boggling behavior. Extrapolated to the scales of our everyday life quantum theory leads to situations such as the famous example of Schroedinger's cat: the cat is neither dead nor alive, but in a so-called quantum superposition of both.

Yet such a behavior has only been confirmed experimentally with small particles and has never been observed with real-world cats. Therefore, scientists conclude that something must cause the suppression of quantum phenomena on larger, everyday scales. Typically this happens because of interaction with other surrounding particles.

The research team, headed by Caslav Brukner from the University of Vienna and the Institute of Quantum Optics and Quantum Information, found that time dilation also plays a major role in the demise of quantum effects. They calculated that once the small building blocks form larger, composite objects - such as molecules and eventually larger structures like microbes or dust particles -, the time dilation on Earth can cause a suppression of their quantum behavior.

The tiny building blocks jitter ever so slightly, even as they form larger objects. And this jitter is affected by time dilation: it is slowed down on the ground and speeds up at higher altitudes. The researchers have shown that this effect destroys the quantum superposition and, thus, forces larger objects to behave as we expect in everyday life.

Paving the way for the next generation of quantum experiments
"It is quite surprising that gravity can play any role in quantum mechanics", says Igor Pikovski, who is the lead author of the publication and is now working at the Harvard-Smithsonian Center for Astrophysics: "Gravity is usually studied on astronomical scales, but it seems that it also alters the quantum nature of the smallest particles on Earth".

"It remains to be seen what the results imply on cosmological scales, where gravity can be much stronger", adds ?aslav Brukner. The results of Pikovski and his co-workers reveal how larger particles lose their quantum behavior due to their own composition, if one takes time dilation into account. This prediction should be observable in experiments in the near future, which could shed some light on the fascinating interplay between the two great theories of the 20th century, quantum theory and general relativity.

Publication in Nature Physics: "Universal decoherence due to gravitational time dilation". I. Pikovski, M. Zych, F. Costa, C. Brukner. Nature Physics (2015) doi:10.1038/nphys3366


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Isolating sunlight scattering could help illuminate Universe's birth
Vancouver, Canada (SPX) May 31, 2015
Astrophysicists have developed a new method for calculating the effect of Rayleigh scattering on photons, potentially allowing researchers to better understand the formation of the Universe. UBC theoretical cosmology graduate student Elham Alipour, UBC physicist Kris Sigurdson and Ohio State University astrophysicist Christopher Hirata probed the effect of Rayleigh scattering - the process ... read more


TIME AND SPACE
Leaving on a biofueled jet plane

Land management practices to become important as biofuels use grows

Scientists create eco-friendly jet fuel from sugarcane

Dutch 'paddy power' pulls electricity from rice fields

TIME AND SPACE
RoboSimian Drives, Walks and Drills in Robotics Finals

Robot eyes will benefit from insect vision

Helping robots handle uncertainty

Using Minecraft to unboggle the robot mind

TIME AND SPACE
Victoria open for clean energy business after wind farm changes

Keeping energy clean and the countryside quiet

NREL, Clemson University collaborate on wind energy testing facilities

South Africa advancing wind energy plans

TIME AND SPACE
California ruling against Uber hits at business model

India's booming taxi-app firms endure bumpy ride

China tech giant Baidu to develop driverless car: media

Tesla boss downplays government subsidy as 'pittance'

TIME AND SPACE
Argonne advances engine simulation for greater efficiency

NIST's 'nano-raspberries' could bear fruit in fuel cells

Improving energy storage with a cue from nature

Saft expands its Li-ion solar energy storage portfolio

TIME AND SPACE
Vietnam to evacuate 1,288 households for construction of nuke power plants

Kiev Claims Nuclear Facilities in Crimea Belong to Ukraine

Japan Prepares to Restart Sendai NPP

S. Korea to close its oldest reactor

TIME AND SPACE
Engineers develop plan to convert US to 100 percent renewable energy

Finland to start selling electricity to Russia

Ethiopia to cut carbon emissions by two-thirds by 2030

UNIDO: China needs greener agenda

TIME AND SPACE
Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

Japanese tree plantations causing nitrogen pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.