Subscribe free to our newsletters via your
. Solar Energy News .




CAR TECH
Electric vehicles may be more useful than previously thought
by Staff Writers
Berkeley CA (SPX) Mar 31, 2015


The researchers thus conclude that "range anxiety may be an over-stated concern" since EVs can meet the daily travel needs of more than 85 percent of U.S. drivers even after losing 20 percent of their originally rated battery capacity. They also conclude that batteries can "satisfy daily mobility requirements for the full lifetime of an electric vehicle."

In the first study of its kind, scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) quantitatively show that electric vehicles (EVs) will meet the daily travel needs of drivers longer than commonly assumed.

Many drivers and much prior literature on the retirement of EV batteries have assumed that EV batteries will be retired after the battery has lost 20 percent of its energy storage or power delivery capability. This study shows that the daily travel needs of drivers continue to be met well beyond these levels of battery degradation.

Samveg Saxena, who leads a vehicle powertrain research program at Berkeley Lab, analyzed real-world driving patterns and found that batteries that have lost 20 percent of their originally rated energy storage capacity can still meet the daily travel needs of more than 85 percent of U.S. drivers. He and his research team also analyzed battery power fade and found that even after substantial loss in battery power capabilities performance requirements are still met.

"There are two main reasons people are hesitant to buy an EV: first, they're unsure it will satisfy their mobility needs, and second, they're afraid the battery won't last the whole life of the car and they'll have to replace it for a lot of money," said Saxena, who has a PhD in mechanical engineering.

"We show that, even after substantial battery degradation, the daily travel needs of most people are still going to be met."

The analysis of battery life was published online recently with open access in the Journal of Power Sources, "Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models," which Saxena co-authored with Jason MacDonald of Berkeley Lab and Caroline Le Floch and Scott Moura of UC Berkeley.

With today's EV batteries, "end of life" is commonly defined as when the storage capacity drops down to 70 to 80 percent of the original capacity. As capacity fades, the vehicle's range decreases. The Berkeley Lab researchers decided to investigate the extent to which vehicles still meet the needs of drivers beyond this common battery retirement threshold.

To conduct the study, the researchers took nearly 160,000 actual driving itineraries from the National Household Travel Survey conducted by the Department of Transportation. These are 24-hour travel itineraries showing when a car was parked or driving, including both weekend and weekday usage by drivers across the United States.

The researchers then assumed all itineraries were driven using a vehicle with specifications similar to a Nissan Leaf, which has about 24 kilowatt-hours of energy storage capacity, similar to many other EVs on the market, and 400 kW of discharge power capability, which was based on battery cell-level measurement data for the chosen vehicle.

This data was fed into the team's unique simulation tool, V2G-Sim, or Vehicle-to-Grid Simulator. Developed by Saxena and other Berkeley Lab researchers, V2G-Sim quantifies second-by-second energy use while driving or charging for any number of different vehicle or charger types under varying driving conditions.

Then for each of the itineraries, they changed different variables, including not only the battery's energy storage capacity, but also when the car was charged (for example, level 1 charger [standard 120V outlet] at home only, level 1 charger at home and work, level 2 charger [240V outlet] at home and level 1 charger at work, and so on), whether it was city or highway driving, whether the air conditioner was on, and whether the car was being driven uphill. More than 13 million individual daily state-of-charge profiles were computed.

"People have commonly thought, 'if I buy an EV, I'll have to replace the battery in a few years because I'll lose the ability to satisfy my driving needs, and it's not worth it,'" Saxena said.

"We have found that only a small fraction of drivers will no longer be able to meet their daily driving needs after having lost 20 percent of their battery's energy storage capabilities. It is important to remember that the vast majority of people don't drive more than 40 miles per day on most days, and so they have plenty of reserve available to accommodate their normal daily trips even if they lose substantial amounts of battery capacity due to degradation."

As the battery continues to degrade down to 50 percent of its original energy storage capacity, the research found that the daily travel needs of more than 80 percent of U.S. drivers can still be met, and at 30 percent capacity, 55 percent of drivers still have their daily needs met. "Even if a driver has a long, unexpected trip beyond the normal daily travel, an EV battery with substantial capacity fade can often still make the trip," Saxena said.

The Berkeley Lab scientists also analyzed power capacity fade, or the declining ability of the battery to deliver power, such as when accelerating on a freeway onramp, as it ages. They modeled the impact of power fade on a vehicle's ability to accelerate as well as to climb steep hills and complete other drive cycles.

They found that power fade for the chosen vehicle does not have a significant impact on an EV's performance, and that a battery's retirement will be driven by energy capacity fade rather than by power fade.

"In fact, our analysis showed that the battery pack we studied, the Nissan Leaf, has a large margin of extra power capability," Saxena said. "Energy capacity fade is really the limiting factor for this vehicle, not power fade."

The researchers thus conclude that "range anxiety may be an over-stated concern" since EVs can meet the daily travel needs of more than 85 percent of U.S. drivers even after losing 20 percent of their originally rated battery capacity. They also conclude that batteries can "satisfy daily mobility requirements for the full lifetime of an electric vehicle."

Given these results, the authors propose that an EV battery's actual retirement may be delayed to when it can no longer meet the daily travel needs of a driver, leading many EV batteries to have a longer lifetime than is commonly assumed. Future work will involve providing personalized EV information for drivers, which takes into account an individual's driving behavior.

"In sum, we can lose a lot of storage and power capability in a vehicle like a Leaf and still meet the needs of drivers," Saxena said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Lawrence Berkeley National Laboratory
Car Technology at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CAR TECH
Pirelli future, and calanders, safe in Chinese hands
Milan (AFP) March 26, 2015
ChemChina's takeover of Pirelli has guaranteed the future of the Italian tyremaker, and its celebrated racy calendars, according to the group's chief executive. In an interview with AFP at the company's Milan headquarters, Marco Tronchetti had a reassuring message for fans of the annual collection of pictures of scantily-clad supermodels shot by leading photographers. "It is the one thin ... read more


CAR TECH
Weltec Biopower Builds 500-kW Biogas Plant for Vegetable Producer

Algae from clogged waterways could serve as biofuels and fertilizer

New yeast strain to enhance biofuel and biochemical production

Chinese airline completes cooking oil fuel flight

CAR TECH
Snake robots learn to turn by following the lead of real sidewinders

Tiny bio-robot is a germ suited-up with graphene quantum dots

Robot finds bodily posture may affect memory and learning

USAF funds sense-and-avoid technology development

CAR TECH
U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

Wind energy: TUV Rheinland supervises Senvion sale

CAR TECH
Tesla's Musk says to 'localise' China output: Xinhua

Pirelli future, and calanders, safe in Chinese hands

Uber ramps up safety efforts after criticism

Pirelli boss attacks 'nationalist' China deal critics

CAR TECH
New technology converts packing peanuts to battery components

Superconductivity breakthroughs

You can't play checkers with charge ordering

Researchers increase energy density of lithium storage materials

CAR TECH
Japan's NRA confirms fault line under nuclear reactor on west coast active

Jordan, Russia ink deal on nuclear reactor plant

N. Korea denies hacking nuclear plants in South

Hungary reaches EU deal on nuclear fuel from Russia

CAR TECH
New Zealand breaks renewable energy record

Energy company Eneco is heating homes with computer servers

Polish Power Exchange hosts 18th AFM Annual Conference

Reducing emissions with a more effective carbon capture method

CAR TECH
Study: Only two intact forests left on Earth

Amazon's carbon uptake declines as trees die faster

Conifers' helicoptering seeds are result of long evolutionary experiment

Protected areas in Indonesia ineffective in preventing deforestation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.