Subscribe free to our newsletters via your
. Solar Energy News .




EARTH OBSERVATION
Elevated carbon dioxide making arid regions greener
by Staff Writers
Washington DC (SPX) Jun 02, 2013


illustration only

Scientists have long suspected that a flourishing of green foliage around the globe, observed since the early 1980s in satellite data, springs at least in part from the increasing concentration of carbon dioxide in Earth's atmosphere.

Now, a study of arid regions around the globe finds that a carbon dioxide "fertilization effect" has, indeed, caused a gradual greening from 1982 to 2010.

Focusing on the southwestern corner of North America, Australia's outback, the Middle East, and some parts of Africa, Randall Donohue of the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Canberra, Australia and his colleagues developed and applied a mathematical model to predict the extent of the carbon-dioxide (CO2) fertilization effect.

They then tested this prediction by studying satellite imagery and teasing out the influence of carbon dioxide on greening from other factors such as precipitation, air temperature, the amount of light, and land-use changes.

The team's model predicted that foliage would increase by some 5 to 10 percent given the 14 percent increase in atmospheric CO2 concentration during the study period. The satellite data agreed, showing an 11 percent increase in foliage after adjusting the data for precipitation, yielding "strong support for our hypothesis," the team reports.

"Lots of papers have shown an average increase in vegetation across the globe, and there is a lot of speculation about what's causing that," said Donohue of CSIRO's Land and Water research division, who is lead author of the new study.

"Up until this point, they've linked the greening to fairly obvious climatic variables, such as a rise in temperature where it is normally cold or a rise in rainfall where it is normally dry. Lots of those papers speculated about the CO2 effect, but it has been very difficult to prove."

He and his colleagues present their findings in an article that has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The team looked for signs of CO2 fertilization in arid areas, Donohue said, because "satellites are very good at detecting changes in total leaf cover, and it is in warm, dry environments that the CO2 effect is expected to most influence leaf cover." Leaf cover is the clue, he added, because "a leaf can extract more carbon from the air during photosynthesis, or lose less water to the air during photosynthesis, or both, due to elevated CO2" That is the CO2 fertilization effect.

But leaf cover in warm, wet places like tropical rainforests is already about as extensive as it can get and is unlikely to increase with higher CO2 concentrations. In warm, dry places, on the other hand, leaf cover is less complete, so plants there will make more leaves if they have enough water to do so.

"If elevated CO2 causes the water use of individual leaves to drop, plants will respond by increasing their total numbers of leaves, and this should be measurable from satellite," Donohue explained.

To tease out the actual CO2 fertilization effect from other environmental factors in these regions, the researchers first averaged the greenness of each location across 3-year periods to account for changes in soil wetness and then grouped that greenness data from the different locations according to their amounts of precipitation.

The team then identified the maximum amount of foliage each group could attain for a given precipitation, and tracked variations in maximum foliage over the course of 20 years. This allowed the scientists to remove the influence of precipitation and other climatic variations and recognize the long-term greening trend.

In addition to greening dry regions, the CO2 fertilization effect could switch the types of vegetation that dominate in those regions. "Trees are re-invading grass lands, and this could quite possibly be related to the CO2 effect," Donohue said. "Long lived woody plants are deep rooted and are likely to benefit more than grasses from an increase in CO2."

"The effect of higher carbon dioxide levels on plant function is an important process that needs greater consideration," said Donohue. "Even if nothing else in the climate changes as global CO2 levels rise, we will still see significant environmental changes because of the CO2 fertilization effect."

CO2 fertilisation has increased maximum foliage cover across the globe's warm, arid environments; Randall J. Donohue and Tim R. McVicar: CSIRO Land and Water, Canberra, Australia; Michael L. Roderick: Research School of Biology, The Australian National University, Canberra, Australia; Research School of Earth Sciences, The Australian National University, Canberra, Australia; and Australian Research Council Centre of Excellence for Climate System Science; Graham D. Farquhar: Research School of Biology, The Australian National University, Canberra, Australia.

.


Related Links
American Geophysical Union
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
NASA Ships Sensors for Seafaring Satellite to France
Pasadena CA (JPL) May 24, 2013
Three NASA-built instruments that are integral components of the next in a series of U.S./European ocean altimetry satellites have arrived in France for integration with their spacecraft in preparation for a 2015 launch. Jason-3 will extend the two-decade series of satellites that are tracking global sea level changes and enabling more accurate weather, ocean and climate forecasts. The thr ... read more


EARTH OBSERVATION
Ultrasound 'making waves' for enhancing biofuel production

Colorado's new alga may be a source of biofuel production

European and US Cellulase Patents granted to Direvo Industrial Biotechnology

Shanghai sees biofuel gold in recycled cooking oil

EARTH OBSERVATION
Researchers design sensitive new microphone modeled on fly ear

Principles of locomotion in confined spaces could help robot teams work underground

Robots learn to take a proper handoff by following digitized human examples

Wayne State University researcher's technique helps robotic vehicles find their way, help humans

EARTH OBSERVATION
Philippines ready to move forward on renewable energy?

Cold climate wind energy showing huge potential

Poland, Finland seek cleaner Baltic, renewable energy investments

Britain to back EU emissions quotas, oppose renewables targets

EARTH OBSERVATION
Volvo chief acknowledges errors, says to stay in US

Monitoring system can detect dangerous fatigue in mine truck driver

Electric cars slow to gain traction in Germany

Space drives e-mobility

EARTH OBSERVATION
EP panel OKs stricter reporting rules for extractive industries

Britain group massively hikes shale gas estimate

China's Xi talks energy in Trinidad

Petrobras mulls reducing energy role in Argentina

EARTH OBSERVATION
S. Korea, US hold talks on key nuclear accord

Thousands rally against nuclear power in Tokyo

TEPCO seeks yet more cash for Fukushima payouts

S. Korea PM vows tough penalties over reactor scam

EARTH OBSERVATION
EU emitted 3.3% less greenhouse gas in 2011: report

Energy - Balancing the Bonanza: Interview with Mark Thoma

Most Energy Execs Indicate Potential For US Energy Independence By 2030

Renewables the light at the end of the power price tunnel

EARTH OBSERVATION
Indonesia on right path to saving forests: Greenpeace

UN mourns slain Costa Rica environmentalist

More at-risk bird species in Brazilian forest than previously thought

Study explores 100 year increase in forestry diseases




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement