Subscribe free to our newsletters via your
. Solar Energy News .




INTERN DAILY
Engineering a better hip implant
by John Riehl
Iowa City IA (SPX) Sep 20, 2012


Computer animation of a hip-implant dislocation. University of Iowa researchers have determined that thigh size in obese people is a reason their hip implants are more likely to fail.

University of Iowa researchers have determined that thigh size in obese people is a reason their hip implants are more likely to fail. In a study, the team simulated hip dislocations as they occur in humans and determined that increased thigh girth creates hip instability in morbidly obese patients (those with a body mass index (BMI) greater than 40).

The researchers propose that surgeons modify surgical procedures to minimize the chance of dislocation in obese patients and consider other designs for hip replacement implants.

"We have shown that morbidly obese patients' thighs are so large that they are actually pushing each other outward and forcing the implant out of its socket," says Jacob Elkins, a UI graduate student and first author of the paper published in the journal Clinical Orthopaedics and Related Research.

"Studies have shown up to a 6.9-fold higher dislocation rate for morbidly obese patients compared to normal weight patients.

Total hip replacement gives mobility back to people who experience debilitating hip joint pain. According to the National Institute of Arthritis and Musculoskeletal and Skin Disease (NIAMS), 231,000 total hip replacements are performed annually in the U.S. and more than 90 percent of these do not require follow-up repair or replacement.

But when an implant fails, it is painful, and costly. Studies have shown that dislocation ranks as the most common reason for failed implants, according to Medicare hospital discharge data.

A hip implant is a ball-in-socket mechanism, designed to simulate a human hip joint. However, it lacks the connective tissue that stabilizes a normal hip joint, meaning the ball portion of the implant can sometimes "pop out."

Clinical studies point to an increased dislocation risk among obese patients with total hip replacements, but the reasons have remained unclear.

Dislocation requires extreme range of motion, such as flexing at the waist. Given the reduced range of motion in the obese, why do they experience more dislocations?

Engineering a better hip implant
Using a computational model he created to understand how a hip implant works in patients, Elkins and research collaborators analyzed 146 healthy adults and six cadaver pelvises. They examined the effects of thigh-on-thigh pressure on the hip implant during a wide range of movements from sitting to standing.

With the ability to simulate movements in human bodies of varying sizes, the team could test different implants. They also looked at the various implants' performances in different body types. They used a hip-center-to-hip-center distance of 200 millimeters as a basis for their analyses of thigh girth for eight different BMIs, ranging from 20 to 55.

The research team ran computations to examine the joint stability of several different hip implants. They tested two femoral head sizes (28 and 36 millimeters), normal versus high-offset femoral neck, and multiple cup abduction angles.

The researchers report three main findings: 1) thigh soft tissue impingement increased the risk of dislocation for BMIs of 40 or greater; 2) implants with a larger femoral head diameter did not substantially improve joint stability; 3) using an implant with a high-offset femoral stem decreased the dislocation risk.

"The larger your legs are, the more force that goes through the hip joint," Elkins says. "It's a simple concept. When your thighs are real big, they push on the hips."

Recommendations for surgeons
Surgeons treating obese hip implant patients can use the study findings to select better implant designs and modify their surgical procedures to minimize the chance of dislocation in obese patients, the researchers say.

"The number one thing surgeons can do is what is called a 'high offset femoral stem,'" says senior author Thomas Brown, UI professor of orthopaedic surgery, referring to the portion of the implant that attaches to the patient's upper thigh bone, or femur.

"Basically, the implant's femoral stem is longer, so it effectively shifts the leg further away from the center rotation of the joint. The thighs then would need to move even further inward before they would abut one another and generate the forces necessary for dislocation."

The study, titled "Morbid obesity may increase dislocation in total hip patients: A biomechanical analysis," was published online on Aug. 21. Elkins is in the UI's College of Engineering Biomechanical Engineering Program and the Carver College of Medicine's Medical Scientist Training Program. Other authors are Matej Daniel, assistant professor at Czech Technical University in Prague, Czech Republic, and former Fulbright Research Scholar at UI Hospitals and Clinics; Douglas Pedersen, UI research associate professor of orthopaedic surgery; Bhupinder Singh, UI doctoral candidate in physical therapy; John Yack, UI associate professor of physical therapy; and John Callaghan, UI professor of orthopaedic surgery.

.


Related Links
University of Iowa
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Body heat, fermentation drive new drug-delivery 'micropump'
West Lafayette IN (SPX) Sep 14, 2012
Researchers have created a new type of miniature pump activated by body heat that could be used in drug-delivery patches powered by fermentation. The micropump contains Baker's yeast and sugar in a small chamber. When water is added and the patch is placed on the skin, the body heat and the added water causes the yeast and sugar to ferment, generating a small amount of carbon dioxide gas. ... read more


INTERN DAILY
World's first biofuel jet flight to take off in Canada

Sorghum Eyed as a Southern Bioenergy Crop

EU confirms change in biofuel targets

France reconsiders plans to boost biofuel use

INTERN DAILY
HF E Researchers Examine Older Adults' Willingness to Accept Help From Robots

NASA's 'Mighty Eagle' Robotic Prototype Lander Aces Major Exam

Japanese robot to sit top-ranked university exam

Soft robots, in color

INTERN DAILY
Sufficient wind energy available to meet global demands without damaging climate

Report backs greater role for wind energy

Wind could meet many times world's total power demand by 2030

High-altitude winds have large potential as a source of clean energy

INTERN DAILY
Japan auto giants scale back China production

Obama to launch China WTO action on autos

Volvo Cars cuts consultant jobs

Engine for 1,000 mph car to be tested

INTERN DAILY
Big Oil faces crisis with Iraq over Kurds

Nexen shareholders approve takeover by China's CNOOC

EU MPs call for 'robust' oversight of shale gas development

Dry-run experiments verify key aspect of Sandia nuclear fusion concept

INTERN DAILY
Japanese power firm to suffer record loss

Quebec shutters sole nuclear plant as Ontario eyes more

Japan gets new nuclear watchdog

Japan to retreat from nuclear power

INTERN DAILY
Home sweet lab: Computerized house to generate as much energy as it uses

'Smart growth' strategies curb car use, greenhouse gas emissions

China to invest $3.5 bn in Zimbabwe power plant: report

EP passes sulfur fuel, efficiency bills

INTERN DAILY
Research study trees chopped down

Old Deeds, Witness Trees Offer Glimpse of Pre-settlement Forest in West Virginia

Trouble in paradise: Does nature worship harm the environment?

Forest mortality and climate change: The big picture




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement