Solar Energy News  
EARLY EARTH
Enhancing our vision of the past
by Staff Writers
Bristol UK (SPX) Dec 06, 2018

A fossil trilobite with its complex eye. These ancient animals were inferred to have minimally possessed four opsins, like many modern arthropods, and should have therefore been able to see colors.

An international group of scientists led by researchers from the University of Bristol have advanced our understanding of how ancient animals saw the world by combining the study of fossils and genetics.

Ancestors of insects and crustaceans that lived more than 500 million years ago in the Cambrian period were some of the earliest active predators, but not much is known about how their eyes were adapted for hunting.

Work published in the Proceedings of the Royal Society B today suggests that when fossil and genetic data are assessed in tandem, previously inaccessible and exciting conclusions about long dead species can be made.

By examining the morphological characteristics of fossils' eyes, alongside the genetic visual pigment clues, a cross-disciplinary team led by a collaboration between the University of Bristol's Davide Pisani, Professor of Phylogenomics in the School of Earth Sciences and Nicholas Roberts, Professor of Sensory Ecology in the School of Biological Sciences, were able to find that ancient predators with more complex eyes are likely to have seen in colour.

Professor Pisani remarked: "Being able to combine fossil and genetic data in this way is a really exciting frontier of modern palaeontological and biological research. Vision is key to many animals' behaviour and ecology, and understanding how extinct animals perceived their environment will help enormously to clarify how they evolved."

By calculating the time of emergence of different visual pigments, and then comparing them to the inferred age of origin of key fossil lineages, the researchers were able to work out the number of pigments likely to have been possessed by different fossil species.

They found that fossil animals with more complex eyes appeared to have more visual pigments, and that the great predators of the Cambrian period may have been able to see in colour.

Dr James Fleming, Professor Pisani and Roberts' former PhD student, explained: "Animal genomes and therefore opsin genes (constituting the base of different visual pigments) evolve by processes of gene duplication.

The opsin and the pigment that existed before the duplication is like a parent, and the two new opsins (and pigments) that emerge from the duplication process are like children on a family tree.

"We calculated the birth dates of these children and this allowed understanding of what the ancient world must have seemed like to the animals that occupied it. We found that while some of the fossils we considered had only one pigment and were monochromat, i.e. they saw the world as if looking into a black and white TV, forms with more complex eyes, like iconic trilobites, had many pigments and most likely saw their world in colours."

The combinations of complex eyes and multiple kinds of visual pigments are what allows animals to distinguish between different objects based on colour alone - what we know as colour vision.

Professor Roberts commented: "It is remarkable to see how in only a very few million years the view those animals' had of their world changed from greys to the colourful world we see today."

The project involved scientists from all across the world - from the UK as well as Denmark, Italy, Korea and Japan, where Dr Fleming has now moved to work as a postdoctoral researcher. Each of them brought their own specialities to this multidisciplinary work, providing expertise in genetics, vision, taxonomy and palaeontology.


Related Links
University of Bristol
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Fires fueled spread of grasslands on ancient Earth
University Park PA (SPX) Dec 03, 2018
Ancient wildfires played a crucial role in the formation and spread of grasslands like those that now cover large parts of the Earth, according to scientists at Penn State and the Smithsonian National Museum of Natural History. A new study links a large rise in wildfires nearly 10 million years ago, in the late Miocene, with a major shift in vegetation on land, as indicated by carbon isotopes of plant biomarkers found in the fossil record. Frequent, seasonal fires helped turn forested areas into o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Why a curious crustacean could hold secret to making renewable energy from wood

Team converts wet biological waste to diesel-compatible fuel

Algae testbed experiment yields data useful for future projects

Researchers advance biomass transformation process

EARLY EARTH
Insight into swimming fish could lead to robotics advances

Flexible electronic skin aids human-machine interactions

Embark on a NASA technology scavenger hunt with Optimus Prime

Smarter AI: Machine learning without negative data

EARLY EARTH
Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

EARLY EARTH
Madrid orders removal of electric scooters

Volkswagen says next generation of combustion engine cars to be its last

Luxury 'Red Flag' models buck China auto sales slump

China agrees to 'reduce and remove' tariffs on US cars: Trump

EARLY EARTH
Interfacial electronic state improving hydrogen storage capacity in Pd-MOF materials

A step closer to fusion energy

Jumpin' droplets! Researchers seek to improve efficiency of condensers

A new way to provide cooling without power

EARLY EARTH
Framatome signs MoU with Bruce Power for safety-related Life-Extension Program updates

Bulgaria leader opposed to increased carbon-cutting targets

France to close 14 nuclear reactors by 2035: Macron

Hard choices as Macron charts France's energy future

EARLY EARTH
Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

EARLY EARTH
Snowpack declines may stunt tree growth and forests' ability to store carbon emissions

Brazil's Bolsonaro blasts govt environmental agencies

Brazil loses 'one million football pitches' worth of forest

In Lebanon, climate change devours ancient cedar trees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.