Solar Energy News  
SOLAR DAILY
Entanglement at heart of '2-for-1' fission in next-generation solar cells
by Staff Writers
Cambridge, UK (SPX) Oct 28, 2015


Pentacene molecules convert a single photon into two molecular excitations via the quantum mechanics of singlet fission. Image courtesy Lawrence W Chin, David Turban and Alex W Chin. For a larger version of this image please go here.

An international team of scientists have observed how a mysterious quantum phenomenon in organic molecules takes place in real time, which could aid in the development of highly efficient solar cells.

The researchers, led by the University of Cambridge, used ultrafast laser pulses to observe how a single particle of light, or photon, can be converted into two energetically excited particles, known as spin-triplet excitons, through a process called singlet fission. If the process of singlet fission can be controlled, it could enable solar cells to double the amount of electrical current that can be extracted.

In conventional semiconductors such as silicon, when one photon is absorbed it leads to the formation of one free electron that can be harvested as electrical current. However certain materials undergo singlet fission instead, where the absorption of a photon leads to the formation of two spin-triplet excitons.

Working with researchers from the Netherlands, Germany and Sweden, the Cambridge team confirmed that this 'two-for-one' transformation involves an elusive intermediate state in which the two triplet excitons are 'entangled', a feature of quantum theory that causes the properties of each exciton to be intrinsically linked to that of its partner.

By shining ultrafast laser pulses - just a few quadrillionths of a second - on a sample of pentacene, an organic material which undergoes singlet fission, the researchers were able to directly observe this entangled state for the first time, and showed how molecular vibrations make it both detectable and drive its creation through quantum dynamics. The results are reported in the journal Nature Chemistry.

"Harnessing the process of singlet fission into new solar cell technologies could allow tremendous increases in energy conversion efficiencies in solar cells," said Dr Alex Chin from the University's Cavendish Laboratory, one of the study's co-authors. "But before we can do that, we need to understand how exciton fission happens at the microscopic level. This is the basic requirement for controlling this fascinating process."

The key challenge for observing real-time singlet fission is that the entangled spin-triplet excitons are essentially 'dark' to almost all optical probes, meaning they cannot be directly created or destroyed by light. In materials like pentacene, the first stage - which can be seen - is the absorption of light that creates a single, high-energy exciton, known as a spin singlet exciton. The subsequent fission of the singlet exciton into two less energetic triplet excitons gives the process its name, but the ability to see what is going on vanishes as the process take place.

To get around this, the team employed a powerful technique known as two-dimensional spectroscopy, which involves hitting the material with a co-ordinated sequence of ultrashort laser pulses and then measuring the light emitted by the excited sample. By varying the time between the pulses in the sequence, it is possible to follow in real time how energy absorbed by previous pulses is transferred and transformed into different states.

Using this approach, the team found that when the pentacene molecules were vibrated by the laser pulses, certain changes in the molecular shapes cause the triplet pair to become briefly light-absorbing, and therefore detectable by later pulses. By carefully filtering out all but these frequencies, a weak but unmistakable signal from the triplet pair state became apparent.

The authors then developed a model which showed that when the molecules are vibrating, they possess new quantum states that simultaneously have the properties of both the light-absorbing singlet exciton and the dark triplet pairs. These quantum 'super positions', which are the basis of Schrodinger's famous thought experiment in which a cat is - according to quantum theory - in a state of being both alive and dead at the same time, not only make the triplet pairs visible, they also allow fission to occur directly from the moment light is absorbed.

"This work shows that optimised fission in real materials requires us to consider more than just the static arrangements and energies of molecules; their motion and quantum dynamics are just as important," said Dr Akshay Rao, from the University's Cavendish Laboratory. "It is a crucial step towards opening up new routes to highly efficiency solar cells."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Shining more light on solar panels
Houghton MI (SPX) Oct 26, 2015
Solar panels are the beacon of renewable energy, yet they are not getting as much light as they could be. Joshua Pearce from Michigan Technological University and a team from Queen's University in Canada have found a way to get more sun to shine on the panels and crank up the output by 30 percent or more. "We expend a lot of blood, sweat and tears to make solar panels as efficient as possi ... read more


SOLAR DAILY
Wood instead of petroleum: Producing chemical substances solely from renewable resources

New UT study highlights environmental, economic shortcomings of federal biofuel laws

Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

SOLAR DAILY
Dive of the RoboBee

Can ballet bugs help us build better robots

NASA's Next Sample Return Robot Challenge Open for Registration

Google invests in Chinese artificial intelligence firm

SOLAR DAILY
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

SOLAR DAILY
Pollution scam pushes VW into first quarterly loss in 15 years

Tokyo Motor Show kicks off with a spotlight on self-driving cars

Automakers win reprieve on EU pollution testing

Cyclists battle Philippine capital's 'Carmageddon'

SOLAR DAILY
New report on energy-efficient computing

Unraveling the complex, intertwined electron phases in a superconductor

Synthetic batteries for the energy revolution

Breakthrough to the development of energy-saving devices for the next-gen

SOLAR DAILY
UK Nuclear Plans in Meltdown After Shareholder Warning

Argentina and Russia to enhance energy cooperation

Japan on track for another nuclear reactor restart

Iran likely to sell excess enriched uranium abroad instead of diluting it

SOLAR DAILY
UN chief says 'no plan B or planet B' in climate talks

To reach CO2, energy goals, combine technologies with stable policies

EDF for carbon price floor

Shift from fossil fuels risks popping 'carbon bubble': World Bank

SOLAR DAILY
Elephants boost tree losses in South Africa's largest savanna reserve

More rain leads to fewer trees in the African savanna

Future coastal climate not cool for redwood forests

New study rings alarm for sugar maple in Adirondacks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.