Solar Energy News  
EARTH OBSERVATION
Environmental damage from fog reduction is observable from outer space
by Staff Writers
Indianapolis IN (SPX) Jun 05, 2020

Two satellite images show vegetation change from fog in two areas of the Namib desert. The left image shows the areas during periods of lower fog; the right image shows the areas during periods of higher fog. Greener areas inside the squares indicate vegetation greening.

A new study led by ecohydrologists at IUPUI has shown for the first time that it's possible to use satellite data to measure the threat of climate change to ecological systems that depend on water from fog.

The paper, published in the journal Geophysical Research Letters, presents the first clear evidence that the relationship between fog levels and vegetation status is measurable using remote sensing. The discovery opens up the potential to easily and rapidly assess fog's impact on ecological health across large land masses - as compared to painstaking ground-level observation.

"It's never been shown before that you can observe the effect of fog on vegetation from outer space," said Lixin Wang, an associate professor in the School of Science at IUPUI, who is the senior author on the study. "The ability to use the satellite data for this purpose is a major technological advance."

The need to understand the relationship between fog and vegetation is urgent since environmental change is reducing fog levels across the globe. The shift most strongly affects regions that depend upon fog as a major source of water, including the redwood forests in California; the Atacama desert in Chile; and the Namib desert in Namibia, with the latter two currently recognized as World Heritage sites under the United Nations due to their ecological rarity.

"The loss of fog endangers plant and insect species in these regions, many of which don't exist elsewhere in the world," said Na Qiao, a visiting student at IUPUI, who is the study's first author.

"The impact of fog loss on vegetation is already very clear. If we can couple this data with large-scale impact assessments based on satellite data, it could potentially influence environmental protection policies related to these regions."

The IUPUI-led study is based upon optical and microwave satellite data, along with information on fog levels from weather stations at two locations operated by the Gobabeb Namib Research Institute in the Namib desert. The satellite data was obtained from NASA and the U.S. Geological Survey. The fog readings were taken between 2015 and 2017.

Wang's work with the Gobabeb facility is supported under a National Science Foundation CAREER grant. At least once a year, he and student researchers, including both graduate and undergraduate students from IUPUI, travel to the remote facility - a two-hour drive on a dirt road from the nearest city - to conduct field research.

The study found a significant correlation between fog levels and vegetation status near both weather stations during the entire time of the study. Among other findings, the optical data from the site near the research facility revealed obvious signs of plant greening following fog, and up to 15 percent higher measures during periods of fog versus periods without fog.

Similar patterns were seen at the second site, located near a local rock formation. The microwave data also found significant correlation between fog and plant growth near the research facility, and up to 60 percent higher measures during periods of fog versus periods without fog.

The study's conclusions are based upon three methods of remotely measuring vegetation: two based upon optical data, which is sensitive to the vibrance of greens in plants, and a third based upon microwave data, which is sensitive to overall plant mass, including the amount of water in stems and leaves. Although observable by machines, the changes in vegetation color are faint enough to go undetected by the human eye.

Next, the team will build upon their current work to measure the effect of fog on vegetation over longer periods of time, which will assist with future predictions. Wang also aims to study the relationship in other regions, including the redwood forests in California.

"We didn't even know you could use satellite data to measure the impact of fog on vegetation until this study," he said. "If we can extend the period under investigation, that will show an even more robust relationship. If we have 10 years of data, for example, we can make future predictions about the strength of this relationship, and how this relationship has been changing over time due to climate change."

Research paper


Related Links
Indiana University
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Atmospheric scientists identify cleanest air on Earth in first-of-its-kind study
Fort Collins CO (SPX) Jun 02, 2020
Colorado State University Distinguished Professor Sonia Kreidenweis and her research group identified an atmospheric region unchanged by human-related activities in the first study to measure bioaerosol composition of the Southern Ocean south of 40 degrees south latitude. Kreidenweis' group, based in the Department of Atmospheric Science, found the boundary layer air that feeds the lower clouds over the Southern Ocean to be pristine - free from particles, called aerosols, produced by anthropogenic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Bricks made from plastic, organic waste

Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

EARTH OBSERVATION
Algorithm quickly simulates a roll of loaded dice

Denmark develops robot to conduct coronavirus tests

Next-generation cockroach-inspired robot is small but mighty

The concept of creating brain-on-chip revealed

EARTH OBSERVATION
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

EARTH OBSERVATION
Southern California's Marengo Charging Plaza officially opens to the public

Volkswagen invests 2 bn euros in Chinese electric vehicle sector

S. Korea's self-driving upstarts take on tech giants

Top German court to rule on VW 'Dieselgate' compensation

EARTH OBSERVATION
An unusual choice of material yields incredibly long-lasting batteries

Surprise link found to edge turbulence in fusion plasma

Next-gen laser facilities look to usher in new era of relativistic plasmas research

Discovery about the edge of fusion plasma could help realize fusion power

EARTH OBSERVATION
Framatome completes acquisition of BWXT's US commercial nuclear services

Framatome to provide engineering services to EDF in the United Kingdom

EDF submits plans for controversial UK nuclear plant

General Atomics integrates nuclear division into Electromagnetics Systems Group

EARTH OBSERVATION
UK electricity plant nears full switch away from coal

World needs 'green recovery', health pros tell G20 leaders

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

EARTH OBSERVATION
Trees in forests all over the world are getting younger, shorter

Football pitch of rainforest destroyed every six seconds

Tropical forests can handle the heat, up to a point

Uruguay renegotiates $3 bn pulp plant deal with Finland's UPM









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.