Solar Energy News  
CARBON WORLDS
Experiments with twisted 2D materials catch electrons behaving collectively
by Staff Writers
Seattle WA (SPX) Oct 07, 2020

Optical microscopy image of a twisted double bilayer graphene device.

Scientists can have ambitious goals: curing disease, exploring distant worlds, clean-energy revolutions. In physics and materials research, some of these ambitious goals are to make ordinary-sounding objects with extraordinary properties: wires that can transport power without any energy loss, or quantum computers that can perform complex calculations that today's computers cannot achieve. And the emerging workbenches for the experiments that gradually move us toward these goals are 2D materials - sheets of material that are a single layer of atoms thick.

In a paper published Sept. 14 in the journal Nature Physics, a team led by the University of Washington reports that carefully constructed stacks of graphene - a 2D form of carbon - can exhibit highly correlated electron properties. The team also found evidence that this type of collective behavior likely relates to the emergence of exotic magnetic states.

"We've created an experimental setup that allows us to manipulate electrons in the graphene layers in a number of exciting new ways," said co-senior author Matthew Yankowitz, a UW assistant professor of physics and of materials science and engineering, as well as a faculty researcher at the UW's Clean Energy Institute.

Yankowitz led the team with co-senior author Xiaodong Xu, a UW professor of physics and of materials science and engineering. Xu is also a faculty researcher with the UW Molecular Engineering and Sciences Institute, the UW Institute for Nano-Engineered Systems and the UW Clean Energy Institute.

Since 2D materials are one layer of atoms thick, bonds between atoms only form in two dimensions and particles like electrons can only move like pieces on a board game: side-to-side, front-to-back or diagonally, but not up or down.

These restrictions can imbue 2D materials with properties that their 3D counterparts lack, and scientists have been probing 2D sheets of different materials to characterize and understand these potentially useful qualities.

But over the past decade, scientists like Yankowitz have also started layering 2D materials - like a stack of pancakes - and have discovered that, if stacked and rotated in a particular configuration and exposed to extremely low temperatures, these layers can exhibit exotic and unexpected properties.

The UW team worked with building blocks of bilayer graphene: two sheets of graphene naturally layered together. They stacked one bilayer on top of another - for a total of four graphene layers - and twisted them so that the layout of carbon atoms between the two bilayers were slightly out of alignment.

Past research has shown that introducing these small twist angles between single layers or bilayers of graphene can have big consequences for the behavior of their electrons. With specific configurations of the electric field and charge distribution across the stacked bilayers, electrons display highly correlated behaviors. In other words, they all start doing the same thing - or displaying the same properties - at the same time.

"In these instances, it no longer makes sense to describe what an individual electron is doing, but what all electrons are doing at once," said Yankowitz.

"It's like having a room full of people in which a change in any one person's behavior will cause everyone else to react similarly," said lead author Minhao He, a UW doctoral student in physics and a former Clean Energy Institute fellow.

Quantum mechanics underlies these correlated properties, and since the stacked graphene bilayers have a density of more than 10^12, or one trillion, electrons per square centimeter, a lot of electrons are behaving collectively.

The team sought to unravel some of the mysteries of the correlated states in their experimental setup. At temperatures of just a few degrees above absolute zero, the team discovered that they could "tune" the system into a type of correlated insulating state - where it would conduct no electrical charge. Near these insulating states, the team found pockets of highly conducting states with features resembling superconductivity.

Though other teams have recently reported these states, the origins of these features remained a mystery. But the UW team's work has found evidence for a possible explanation. They found that these states appeared to be driven by a quantum mechanical property of electrons called "spin" - a type of angular momentum.

In regions near the correlated insulating states, they found evidence that all the electron spins spontaneously align. This may indicate that, near the regions showing correlated insulating states, a form of ferromagnetism is emerging - not superconductivity. But additional experiments would need to verify this.

These discoveries are the latest example of the many surprises that are in store when conducting experiments with 2D materials.

"Much of what we're doing in this line of research is to try to create, understand and control emerging electronic states, which can be either correlated or topological, or possess both properties," said Xu. "There could be a lot we can do with these states down the road - a form of quantum computing, a new energy-harvesting device, or some new types of sensors, for example - and frankly we won't know until we try."

In the meantime, expect stacks, bilayers and twist angles to keep making waves.

Research paper


Related Links
University Of Washington
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
New Insights into the Origin of Diamonds in Meteorites
Houston TX (SPX) Sep 29, 2020
Scientists have offered new insights into the origin of diamonds in ureilites (a group of stony meteorites). These diamonds most likely formed by rapid shock transformation from graphite (the common low-pressure form of pure carbon) during one or more major impacts into the ureilite parent asteroid in the early solar system. Previously, researchers have proposed that diamonds in ureilites formed like those on Earth - deep in the mantle of the planet, where the high pressures needed to form diamond ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Inducing plasma in biomass could make biogas easier to produce

Novel photocatalysts can perform solar-driven conversion of CO2 into fuel

Cascades with carbon dioxide

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future

CARBON WORLDS
First tests for landing the Martian Moons eXploration Rover

Teams demonstrate swarm tactics in fourth major OFFSET Field Experiment

Technology developed for Lunar landings makes self-driving cars safer on Earth

Light processing improves robotic sensing, study finds

CARBON WORLDS
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

CARBON WORLDS
Investors load $500 mn into Uber's trucking business

Electric truck startup Nikola postpones December event

VW 'dieselgate' fraud: Timeline of a scandal

European carmakers' leather use fuelling deforestation: NGO

CARBON WORLDS
KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism

Scientists present a comprehensive physics basis for a new fusion reactor design

MIT physicists inch closer to zero-emissions power source

Promising computer simulations for stellarator plasmas

CARBON WORLDS
Filtering radioactive elements from water

Framatome joins with academia and industry partners to develop nuclear reactor digital twins

Russia's giant nuclear-powered icebreaker makes maiden voyage

EU court approves UK state aid for nuclear plant

CARBON WORLDS
Canada spends on infrastructure to boost jobs, cut CO2 emissions

Deloitte scraps report on climate change benefit for GDP

'Big Four' accounting firm sees upside to climate change

Big promises, but can China be carbon neutral by 2060

CARBON WORLDS
Brazil court blocks move to repeal mangrove protections

Brazil's Bolsonaro hits back at Biden over rainforest

Pine needles evolved to help trees cope with rainfall

Brazil rejects deforestation concerns; Victim of 'brutal disinformation' says Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.