Solar Energy News  
TIME AND SPACE
Exploring the mysteries of supercooled water
by Staff Writers
Washington DC (SPX) Mar 01, 2017


Top left panel: Snapshot of a slice of water confined in the silica pore. The blue circle contains the 'free water,' the water molecules that are not in contact with the substrate. Bottom left panel: Density profile of the water molecules along the pore radius. The regions occupied respectively by the free water and the "bound water," water attached to the substrate, are indicated. Top right panel: The curves represent how the oxygen atoms of the molecules are arranged in shells around a given oxygen atom in the origin at different temperatures. The peaks represent the positions where the different shells are located. The structure is shown for some of the supercooled temperatures investigated. Bottom right panel: The main result of our computer simulation is given by the behavior of the excess entropy, a fraction of the total entropy, obtained from the oxygen structure of free water. The deviation of the calculated black points from the theoretical (red) curve indicates that water undergoes a change of behavior before and upon approaching the glass transition. Image courtesy Margherita De Marzio, Gaia Camisasca, Maria Martin Conde, Mauro Rovere and Paola Gallo.

There are few things more central to life on earth than water. It dominates the physical landscape, covering much of the planet as oceans. It's also a major component of the human body, comprising, for example, more than 70% of the mass of a newborn baby.

Yet despite its omnipresence, water has many physical properties that are still not completely understood by the scientific community. One of the most puzzling relates to the activity of water molecules after they undergo a process called "supercooling."

Now, new findings from Roma Tre University, in Rome, Italy, on the interactions of water molecules under these exotic conditions appear this week in the Journal of Chemical Physics, from AIP Publishing.

"Normally, when liquid water is cooled below its freezing point, the water molecules arrange themselves in the ordered, crystal structure that is ice," said Paola Gallo, an associate professor of physics at Roma Tre University.

"With supercooling, special techniques are employed to cool water very quickly in such a way that it remains a liquid even though its temperature has been lowered well below its freezing point. There are a number of anomalies in water molecules' activity in these supercooled conditions that have not yet been fully explained."

Using a computer-based simulation, Gallo and her colleagues shed light on a thermodynamic property of water that helps explain how water molecules in a supercooled state interact with each other and with the molecules of other materials.

"While supercooling is an important phenomenon to study, the challenge is that it's very difficult to supercool water in a lab," said Gallo.

In the past, scientists have attempted to address this issue by supercooling water "in confinement," focusing efforts on studying water confined in manufactured pores having a radius of a few namometers (i.e. one or two orders of magnitude larger than the diameter of the molecule of water). This, however, has raised a question of whether the properties of this confined water differ from that of bulk water, where water molecules interact freely in larger volumes.

"This question has been a point of ongoing interest in our work," said Gallo. "In previous studies, we have shown that interactions with other chemicals affect only those water molecules that are very physically close to the molecules of another chemical, such as the molecules that make up the wall of the pore. The water molecules at the center of the pore, the free water, retain many of the properties of bulk water."

"With this study, we discovered that there are further parallels," Gallo also said. "Specifically, our simulation shows that a property of the structure of the network of water molecules, which can be measured and verified experimentally, can be used to determine the changes in water's entropy, the thermodynamic quantity that measures disorder in a system [...] that may offer insights on some of the more unusual thermodynamic facets of water's activity in this supercooled state."

These findings create a framework for other experimental physicists to recreate the simulation with physical samples in a lab. For Gallo and her colleagues, their work offers a foundation for further investigation of the relationships between the thermodynamic characteristics of confined and bulk water.

"Water is the most important liquid that we have on earth," explained Gallo. "Any insights that researchers can uncover about its properties can advance not only our collective understanding of physics, but also of biology and chemistry, and open up new possibilities for integrating this knowledge into different technological applications."

The article, "Structural properties and fragile to strong transition in confined water," is authored by Margherita De Marzio, Gaia Camisasca, Maria Martin Conde, Mauro Rovere and Paola Gallo. The article will appear in The Journal of Chemical Physics Feb. 28, 2017 [DOI:10.1063/1.4975624].

TIME AND SPACE
First trace of differences between matter and 'ordinary' antimatter
Cracow, Poland (SPX) Feb 24, 2017
The world around us is mainly constructed of baryons, particles composed of three quarks. Why are there no antibaryons, since just after the Big Bang, matter and antimatter came into being in exactly the same amounts? A lot points to the fact that after many decades of research, physicists are closer to the answer to this question. In the Large Hadron Collider beauty (LHCb) experiment the first ... read more

Related Links
American Institute of Physics
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Scientists use nanoparticles, ultraviolet light to turn CO2 into fuel

Light-driven reaction converts carbon dioxide into fuel

Biofuel produced by microalgae

Alberta backing bioenergy programs

TIME AND SPACE
Tracking the movement of cyborg cockroaches

Study: Even 'benevolent bots' fight, sometimes for years

Scientists invent new, faster gait for six-legged robots

Now you can 'build your own' bio-bot

TIME AND SPACE
Breakthrough research for testing and arranging vertical axis wind turbines

US grid can handle more offshore wind power

Michigan meets renewable energy targets

British grid drawing power from new offshore wind farm

TIME AND SPACE
Kymeta aimes to deliver terabyte connectivity to the car of the future

Tesla slips back into red but revenue grows

Roads are driving rapid evolutionary change in our environment

Four-stroke engine cycle produces hydrogen from methane and captures CO2

TIME AND SPACE
Getting rid of the last bits of sulfur in fuel

Romeo Power expands EV battery pack production in Southern California

Donut-shaped fusion plasmas decrease adverse turbulence

Stabilizing energy storage

TIME AND SPACE
Iran requests 950 tonnes of uranium from Kazakhstan

Researchers find new clues for nuclear waste cleanup

Next generation of nuclear robots will go where none have gone before

German energy giant RWE posts 5.7-bln-euro loss in 2016

TIME AND SPACE
New Zealand lauded for renewables, but challenges remain

EU parliament backs draft carbon trading reforms

Taiwan lantern makers go green for festival of lights

Republican ex-top diplomats propose a carbon tax

TIME AND SPACE
Forests worldwide threatened by drought

Forests to play major role in meeting Paris climate targets

Study: The forest is getting farther away, especially in rural America

Myanmar makes record seizures of illegal timber









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.