Solar Energy News  
DEEP IMPACT
Extraterrestrial impact preceded ancient global warming event
by Staff Writers
Troy NY (SPX) Oct 25, 2016


Microtektites as first seen in a sediment sample from the onset of the Paeocene-Eocene Thermal Maximum. Image courtesy Rensselaer Polytechnic Institute. For a larger version of this image please go here.

A comet strike may have triggered the Paleocene-Eocene Thermal Maximum (PETM), a rapid warming of the Earth caused by an accumulation of atmospheric carbon dioxide 56 million years ago, which offers analogs to global warming today.

Sorting through samples of sediment from the time period, researchers at Rensselaer Polytechnic Institute discovered evidence of the strike in the form of microtektites - tiny dark glassy spheres typically formed by extraterrestrial impacts. The research will be published tomorrow in the journal Science.

"This tells us that there was an extraterrestrial impact at the time this sediment was deposited - a space rock hit the planet," said Morgan Schaller, an assistant professor of earth and environmental sciences at Rensselaer, and corresponding author of the paper.

"The coincidence of an impact with a major climate change is nothing short of remarkable." Schaller is joined in the research by Rensselaer professor Miriam Katz and graduate student Megan Fung, James Wright of Rutgers University, and Dennis Kent of Columbia University.

Schaller was searching for fossilized remains of Foraminifera, a tiny organism that produces a shell, when he first noticed a microtektite in the sediment he was examining. Although it is common for researchers to search for fossilized remains in PETM sediments, microtektites have not been previously detected.

Schaller and his team theorize this is because microtektites are typically dark in color, and do not stand out on the black sorting tray researchers use to search for light-colored fossilized remains. Once Schaller noticed the first microtektite, the researchers switched to a white sorting tray, and began to find more.

At peak abundance, the research team found as many as three microtektites per gram of sediment examined. Microtektites are typically spherical, or tear-drop shaped, and are formed by an impact powerful enough to melt and vaporize the target area, casting molten ejecta into the atmosphere. Some microtektites from the samples contained "shocked quartz," definitive evidence of their impact origin, and exhibited microcraters or were sintered together, evidence of the speed at which they were traveling as they solidified and hit the ground.

Atmospheric carbon dioxide increased rapidly during the PETM, and an accompanying spike in global temperatures of about 5 to 8 degrees Celsius lasted for about 150,000 years. Although this much is known, the source of the carbon dioxide had not been determined, and little is known about the exact sequence of events - such as how rapidly carbon dioxide entered the atmosphere, how quickly and at what rate temperatures began to rise, and how long it took to reach a global high temperature.

One clue can be found in a sudden shift in the ratio of carbon isotopes (atoms containing a number of neutrons unequal to the protons in their nucleus) in certain fossils from the time period.

In particular, Foraminifera, or "forams," produce a shell whose chemistry is representative of atmospheric and ocean carbon isotopes. The research team initially set out to examine the ratio of carbon isotopes in Foraminifera fossils over time, to more closely pinpoint events during the PETM.

"In sediment records, when you look at the ratio of carbon-12 to carbon-13 in a particular species, you see that it's stable and then it abruptly shifts, wiggles back and forth and slowly returns to pre-event values over hundreds of thousands of years," Schaller said.

"This evidence defines the event, and tells us that the atmosphere changed, in particular adding carbon from a source depleted in carbon-13. A comet impact on its own may have contributed carbon to the atmosphere, but is too small to explain the whole event and more likely acts as a trigger for additional carbon releases from other sources."

As a source of fossils, the team used sediment cores - cylinders of sediment extracted vertically from sediment deposits with a hollow bit - known to correspond to the time period of the PETM. Sediments near the top are more recent, those further down are older, and signature layers indicating known events are used to calibrate the timescale represented in the sample. The team chose cores from three sites - Wilson Lake and Millville in New Jersey, and Blake Nose, an underwater site east of Florida - known for a rich sedimentary record of the time period.

As Schaller tells it, the discovery of microtektites was "completely by accident." Ordinarily, the team passes samples through sieves of various sizes, to isolate samples most likely to contain forams. The tektites, which are smaller than most forams, would have been largely removed in this process.

"We were having lousy luck looking for forams, and I was frustrated. I went to the lab and dumped a sample on the sorting tray without sieving it, and there it was," Schaller said. "It was a stunning moment. I knew what I was looking at was not normal."

Once the team made the discovery, they obtained a sample from a fourth site - Medford - where the unit is naturally exposed at the surface, to rule out the possibility that the samples had been contaminated by the drilling process. The Medford samples also contained microtektites.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rensselaer Polytechnic Institute
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
DEEP IMPACT
Research supports idea that moon was created by object hitting infant Earth
Baltimore MD (SPX) Sep 28, 2016
New research led by Johns Hopkins University scientists argues that a layer of iron and other elements deep under ground is the evidence scientists have long been seeking to support the hypothesis that the moon was formed by a planetary object hitting the infant Earth some 4.5 billion years ago. The paper is published online in the current issue of Nature Geoscience, and uses laboratory si ... read more


DEEP IMPACT
Turning biofuel waste into wealth in a single step

Biomass heating could get a 'green' boost with the help of fungi

Algae discovery offers potential for sustainable biofuels

The road to green hydrogen runs through mazes in algal proteins

DEEP IMPACT
Scientists simplify model for human behavior in automation

US warned against Chinese takeover of German firm: report

Robotic tutors for primary school children

Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

DEEP IMPACT
OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

California eyes wind, wave potential

DEEP IMPACT
Long-vanished German car brand joins electric race

IBM Watson machine smarts hitch a ride with GM cars

US judge approves massive VW emissions settlement

Driverless truck from Uber's Otto makes Colorado beer delivery

DEEP IMPACT
U.S. Army to field-test wearable power-generation system in 2017

Inspiration from the ocean

Ultralow power transistors could function for years without a battery

Scientists find static 'stripes' of electrical charge in copper-oxide superconductor

DEEP IMPACT
Bulgaria to pay Russia 600 mn euros for dropped nuclear plant

Germany approves controversial nuclear waste deal

Anti-nuclear politician's win hurts Japan atomic push

Japan nuclear reactor shuttered for safety work

DEEP IMPACT
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

DEEP IMPACT
Brazil land grab threatens isolated tribes: activists

The fight against deforestation: Why are Congolese farmers clearing forest?

Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.