Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
Fast Radio Bursts Might Come From Nearby Stars
by Staff Writers
Cambridge MA (SPX) Dec 16, 2013


New research suggests that mysterious events known as fast radio bursts might come from nearby flaring stars, rather than more energetic events in the distant universe. This image of the Sun, from NASA's Solar Dynamics Observatory, shows a lower-energy example of the kind of event that could cause fast radio bursts. Image courtesy NASA.

First discovered in 2007, "fast radio bursts" continue to defy explanation. These cosmic chirps last for only a thousandth of a second. The characteristics of the radio pulses suggested that they came from galaxies billions of light-years away. However, new work points to a much closer origin - flaring stars within our own galaxy.

"We propose that fast radio bursts aren't as exotic as astronomers first thought," says lead author Avi Loeb of the Harvard-Smithsonian Center for Astrophysics (CfA).

Fast radio bursts are both brief and bright, packing a lot of energy into a short time. Only six have been discovered to date, all of them in archival data. Each was detected only once, making follow-up studies difficult.

A detailed analysis of the bursts showed that the pulses passed through a large column of electrons on their way to Earth. If those electrons were spread out across intergalactic space, then the pulses must have crossed billions of light-years. As a result, they would have to come from extremely energetic events. Gamma-ray bursts don't produce the right radio frequencies, so astronomers looked to other extreme events like the collapse of a neutron star into a black hole.

Loeb and his colleagues reasoned that if the bursts came from a closer location, within the Milky Way galaxy, then they wouldn't require as much energy. The explanation could be more mundane.

Stellar flares fit the bill. Tightly packed electrons in the stellar corona would cause the same effect as the more diffuse intergalactic electrons.

Two types of stars are known to create radio bursts: young, low mass stars and solar-mass "contact" binaries which orbit so close that they share their outer, gaseous envelopes. Both types of star system would also fluctuate in brightness at optical wavelengths (i.e. visible light).

To test their theory Loeb and his colleagues searched the locations of three fast radio bursts to look for variable stars, using the telescopes at Tel-Aviv University's Wise Observatory, in Israel.

"It was straightforward to monitor these fields for several nights, to see if they showed anything unusual," says Dani Maoz of Tel Aviv University.

"We were surprised that, apparently, no one had done this before," adds Yossi Shvartzvald, a graduate student who led the observations.

They discovered a contact binary system in one location. The binary consists of two Sun-like stars orbiting each other every 7.8 hours. They are located about 2,600 light-years from Earth. Statistics of stars across the observed field of view show that there is less than a 5 percent chance that the binary star is in the right place by coincidence.

"Whenever we find a new class of sources, we debate whether they are close or far away," says Loeb. Gamma-ray bursts were initially thought to be coming from within the Milky Way; only later did astronomers learn they came from cosmological distances.

"Here we have exactly the opposite," explains Loeb. Fast radio bursts, initially thought to be distant, may actually originate from our own galaxy.

The study has been accepted for publication in the Monthly Notices of the Royal Astronomical Society.

.


Related Links
Harvard-Smithsonian Center for Astrophysics
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Astronomers discover first noble gas molecules in space
London, UK (SPX) Dec 16, 2013
Noble gas molecules have been detected in space for the first time in the Crab Nebula, a supernova remnant, by astronomers at UCL. Led by Professor Mike Barlow (UCL Department of Physics and Astronomy) the team used ESA's Herschel Space Observatory to observe the Crab Nebula in far infrared light. Their measurements of regions of cold gas and dust led them to the serendipitous discovery of ... read more


STELLAR CHEMISTRY
Biorefinery could put South Australian forest industry back on growth track

Ground broken on $6 million Hungarian farm biogas plant

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

STELLAR CHEMISTRY
Google buys military robot-maker Boston Dynamics for battle with Amazon

Robot herder brings the cows in for milking in Australia

NASA Developing Legs for ISS Robonaut 2

Literal Android: Google develops robots to replace people in manufacturing, retail

STELLAR CHEMISTRY
Wind energy: TUV Rheinland certifies PowerWind wind turbines

Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

Ethiopia spearheads green energy in sub-Saharan Africa

STELLAR CHEMISTRY
Renault signs $1.3 bn joint venture deal with China's Dongfeng

Ford to open plants in China, Brazil; add 5,000 US jobs

European scientists say device could let police remotely halt vehicles

Peugeot confirms in talks with Chinese carmaker, GM pulls out

STELLAR CHEMISTRY
British PM urges EU to cut shale gas red tape

China natural gas represents 'golden opportunities'

Israeli navy to get 2 German frigates to shield natural gas fields

Canadian court greenlights Ecuadoran lawsuit against Chevron

STELLAR CHEMISTRY
Ratepayers Could Save $1.7 Billion If Aging Nuclear Plant At Hanford, Washington Is Closed

US Risks Losing Critical Clean Electricity if Nuclear Power Plants Keep Closing at Steady Pace

US takes last shipment of Russian uranium

Company says no danger after fire at US nuclear plant

STELLAR CHEMISTRY
Ukraine's Two New Energy Deals

Keeping the lights on

Global energy demand to increase 35 percent: ExxonMobil

Who Is Keeping the Lights on in California?

STELLAR CHEMISTRY
Young tropical forests contribute little to biodiversity conservation

More logging, deforestation may better serve climate in some areas

Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement