Solar Energy News  
INTERNET SPACE
Fast, stretchy circuits could yield new wave of wearable electronics
by Staff Writers
Madison WI (SPX) May 31, 2016


Fabricated in interlocking segments like a 3-D puzzle, the new integrated circuits could be used in wearable electronics that adhere to the skin like temporary tattoos. Because the circuits increase wireless speed, these systems could allow health care staff to monitor patients remotely, without the use of cables and cords. Image courtesy of Yei Hwan Jung and Juhwan Lee/University of Wisconsin-Madison. For a larger version of this image please go here.

The consumer marketplace is flooded with a lively assortment of smart wearable electronics that do everything from monitor vital signs, fitness or sun exposure to play music, charge other electronics or even purify the air around you - all wirelessly.

Now, a team of University of Wisconsin-Madison engineers has created the world's fastest stretchable, wearable integrated circuits, an advance that could drive the Internet of Things and a much more connected, high-speed wireless world.

Led by Zhenqiang "Jack" Ma, the Lynn H. Matthias Professor in Engineering and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison, the researchers published details of these powerful, highly efficient integrated circuits today, May 27, 2016, in the journal Advanced Functional Materials.

The advance is a platform for manufacturers seeking to expand the capabilities and applications of wearable electronics - including those with biomedical applications - particularly as they strive to develop devices that take advantage of a new generation of wireless broadband technologies referred to as 5G.

With wavelength sizes between a millimeter and a meter, microwave radio frequencies are electromagnetic waves that use frequencies in the .3 gigahertz to 300 gigahertz range. That falls directly in the 5G range.

In mobile communications, the wide microwave radio frequencies of 5G networks will accommodate a growing number of cellphone users and notable increases in data speeds and coverage areas.

In an intensive care unit, epidermal electronic systems (electronics that adhere to the skin like temporary tattoos) could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.

What makes the new, stretchable integrated circuits so powerful is their unique structure, inspired by twisted-pair telephone cables. They contain, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.

This serpentine shape - formed in two layers with segmented metal blocks, like a 3-D puzzle - gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference and, at the same time, confine the electromagnetic waves flowing through them, almost completely eliminating current loss. Currently, the researchers' stretchable integrated circuits can operate at radio frequency levels up to 40 gigahertz.

And, unlike other stretchable transmission lines, whose widths can approach 640 micrometers (or .64 millimeters), the researchers' new stretchable integrated circuits are just 25 micrometers (or .025 millimeters) thick. That's tiny enough to be highly effective in epidermal electronic systems, among many other applications.

Ma's group has been developing what are known as transistor active devices for the past decade. This latest advance marries the researchers' expertise in both high-frequency and flexible electronics.

"We've found a way to integrate high-frequency active transistors into a useful circuit that can be wireless," says Ma, whose work was supported by the Air Force Office of Scientific Research. "This is a platform. This opens the door to lots of new capabilities."

Other authors on the paper include Yei Hwan Jung, Juhwan Lee, Namki Cho, Sang June Cho, Huilong Zhang, Subin Lee, Tong June Kim and Shaoqin Gong of UW-Madison and Yijie Qiu of the University of Electronic Science and Technology of China.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Optics breakthrough to revamp night vision
Sydney, Australia (SPX) May 30, 2016
A breakthrough by an Australian collaboration of researchers could make infra-red technology easy-to-use and cheap, potentially saving millions of dollars in defence and other areas using sensing devices, and boosting applications of technology to a host of new areas, such as agriculture. Infra-red devices are used for improved vision through fog and for night vision and for observations n ... read more


INTERNET SPACE
Forest-destroying palm oil powers cars in EU: report

Weed stems ripe for biofuel

Scientists turning human waste into biofuel in South Korea

Forest-destroying palm oil powers cars in EU

INTERNET SPACE
Russia to test humanoid robot at space station in 2020

EU, Berlin oppose Chinese bid for German robotics maker: report

Carnegie Mellon transparency reports make AI decision-making accountable

Robotics engineers design actuators inspired by muscle

INTERNET SPACE
Industry survey finds U.S. wind power growing

Argonne coating shows surprising potential to improve reliability in wind power

SeaPlanner is Awarded Contract for Rampion Offshore Wind Farm

British share of renewables setting records

INTERNET SPACE
Uber raises $3.5 bn from Saudi investment fund

Study shows tax on plug-in vehicles is not answer to road-funding woes

Google to open Detroit-area autonomous car center

GM venture to recall over two million cars in China

INTERNET SPACE
PPPL physicist conducts experiments indicating efficiency of fusion start-up technique

Tiny probe could produce big improvements in batteries and fuel cells

Investment in energy storage vital if renewables to achieve full potential

New concept turns battery technology upside-down

INTERNET SPACE
Renewables take wind out of Hungary-Russia nuclear project

Bids for S.Africa nuclear plants to open in next months

Russia, Kenya sign memorandum on nuclear cooperation, plan first NPP

Moscow, Yerevan discuss provision of Armenian NPP with fuel

INTERNET SPACE
It pays to increase energy consumption

Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

EU court overturns carbon market free quotas

INTERNET SPACE
Shock as Honduras national park cleared to halt bugs

Green legacy of WWI carnage: the riches of Verdun forest

Senegal's southern forests may disappear by 2018: ecologist

Bacteria in branches naturally fertilize trees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.