Solar Energy News  
STELLAR CHEMISTRY
Fermi Traces the History of Starlight Across the Cosmos
by Jeanette Kazmierczak for GSFC News
Greenbelt MD (SPX) Nov 30, 2018

This map of the entire sky shows the location of 739 blazars used in the Fermi Gamma-ray Space Telescope's measurement of the extragalactic background light (EBL). The background shows the sky as it appears in gamma rays with energies above 10 billion electron volts, constructed from nine years of observations by Fermi's Large Area Telescope. The plane of our Milky Way galaxy runs along the middle of the plot.

Scientists using data from NASA's Fermi Gamma-ray Space Telescope have measured all the starlight produced over 90 percent of the universe's history. The analysis, which examines the gamma-ray output of distant galaxies, estimates the formation rate of stars and provides a reference for future missions that will explore the still-murky early days of stellar evolution.

"Stars create most of the light we see and synthesize most of the universe's heavy elements, like silicon and iron," said lead scientist Marco Ajello, an astrophysicist at Clemson University in South Carolina. "Understanding how the cosmos we live in came to be depends in large part on understanding how stars evolved."

A paper describing the new starlight measurement appears in the Nov. 30 issue of Science and is now available online.

One of the main goals of the Fermi mission, which celebrated its 10th anniversary in orbit this year, was to assess the extragalactic background light (EBL), a cosmic fog composed of all the ultraviolet, visible and infrared light stars have created over the universe's history. Because starlight continues to travel across the cosmos long after its sources have burned out, measuring the EBL allows astronomers to study stellar formation and evolution separately from the stars themselves.

"This is an independent confirmation of previous measurements of star-formation rates," said David Thompson, Fermi's deputy project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"In astronomy, when two completely independent methods give the same answer, that usually means we're doing something right. In this case we're measuring star formation without looking at stars at all but by observing gamma rays that have traveled across the cosmos."

Gamma rays are the highest-energy form of light. They are so energetic, in fact, that their interactions with starlight have unusual consequences. "When the right frequencies of light collide, they can convert into matter through Albert Einstein's famous equation E=mc2," said co-author Alberto Dominguez, an astrophysicist at Complutense University of Madrid.

The collision between a high-energy gamma ray and infrared light, for example, transforms the energy into a pair of particles, an electron and its antimatter counterpart, a positron. The same process occurs when medium-energy gamma rays interact with visible light, and low-energy gamma rays interact with ultraviolet light.

Fermi's ability to detect gamma rays across a wide range of energies makes it uniquely suited for mapping the EBL spectrum. Enough of these interactions occur over cosmic distances that the farther back scientists look, the more evident their effects become on gamma-ray sources, enabling a deep probe of the universe's stellar content.

The scientists, led by Vaidehi Paliya, a postdoctoral researcher in Ajello's group at Clemson, examined gamma-ray signals from 739 blazars - galaxies with monster black holes at their centers - collected over nine years by Fermi's Large Area Telescope (LAT).

The measurement quintuples the number of blazars used in an earlier Fermi EBL analysis published in 2012 and includes new calculations of how the EBL builds over time, revealing the peak of star formation around 10 billion years ago.

The new EBL measurement also provides important confirmation of previous estimates of star formation from missions that analyze many individual sources in deep galaxy surveys, like the Hubble Space Telescope.

These types of surveys, however, often miss fainter stars and galaxies and cannot account for star formation that takes place in intergalactic space. These missing contributions must be estimated during each survey's analysis.

The EBL, though, includes starlight from all sources and avoids these problems. The Fermi result therefore provides independent confirmation that measurements using deep galaxy surveys properly account for their biases. It can also help guide future surveys from missions like the James Webb Space Telescope (JWST).

"One of Webb's primary objectives is to unravel what happened in the first billion years after the big bang," said co-author Kari Helgason, an astrophysicist at the University of Iceland. "Our work places important new limits on the amount of starlight we can expect to see in those first billion years - a largely unexplored epoch in the universe - and provides a benchmark for future studies."

Research Report: "A Gamma-Ray Determination of the Universe's Star Formation History," Fermi-LAT Collaboration, 2018 Nov. 30, Science


Related Links
Fermi Gamma-ray Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
NASA's Webb Takes a Carriage Ride to Testing Chambers
Greenbelt MD (SPX) Nov 28, 2018
NASA's James Webb Space Telescope is both large and heavy, so it requires some big equipment to move it from one place to another during testing. The sunshield on the Webb telescope is 70 feet by 48 feet, or roughly the size of a tennis court. Once it and the attached spacecraft bus are combined with the telescope element, with its mirrors and science instruments, Webb will weigh almost 14,000 pounds, which is about as much as a full-size school bus. In this photo, taken at Northrop Grumman ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Scientists uncovered the mechanism of fungal luminescence and created luminescent yeasts

Dead fish to power Norwegian cruise liners

How to convert carbon dioxide into plastics and other products

Affordable catalyst for CO2 recycling

STELLAR CHEMISTRY
Embark on a NASA technology scavenger hunt with Optimus Prime

Smarter AI: Machine learning without negative data

DARPA, BAE to develop AI for interpreting radio-frequency signals

GMV leads an ambitious campaign of space robotics trials

STELLAR CHEMISTRY
Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

STELLAR CHEMISTRY
Sparks fly in Berlin and Brussels over cancelled diesel meet

Diesel driving bans 'self-destructive', says German minister

Volkswagen to spend 44 bn euros on 'electric offensive'

Germany tweaks law to limit diesel car bans

STELLAR CHEMISTRY
Successful second round of experiments with Wendelstein 7-X

Radical approach for brighter LEDs

Making it crystal clear: Crystallinity reduces resistance in all-solid-state batteries

The shape of things to come: Flexible, foldable supercapacitors for energy storage

STELLAR CHEMISTRY
France to close 14 nuclear reactors by 2035: Macron

Hard choices as Macron charts France's energy future

Japan faces difficult energy choices

GE Hitachi and PRISM selected for US Dept of Energy's Versatile Test Reactor program

STELLAR CHEMISTRY
EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

STELLAR CHEMISTRY
In Lebanon, climate change devours ancient cedar trees

How we can get more out of our forests

Brazil loses 'one million football pitches' worth of forest

Large areas of the Brazilian rainforest at risk of losing protection









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.