Solar Energy News  
SPACE MEDICINE
Fingerprint research to combat harmful bacteria
by Staff Writers
Cologne, Germany (SPX) Jan 19, 2022

Touching Surfaces - tracking down microbial contamination on the ISS

Microorganisms exist everywhere where humans are found. And humans are everywhere - not just on Earth, but on the International Space Station (ISS), as well. Some of these microscopic creatures are perfectly harmless, but others can cause serious diseases or even inflict material damage on the ISS.

The German Aerospace Center is investigating ways of preventing this in its 'Touching Surfaces' experiment, which is being carried out on board the ISS, at Cologne University Hospital and now also by schoolchildren.

The 10 chosen schools have received special sample holders - 'touch arrays' - for the experiment. These hold copper, brass and steel surfaces fixed into an aluminium frame, each with three different surface textures. Over the course of 15 weeks, the 10- to 16-year-old pupils that make up the project teams will touch all of the metal surfaces in the touch arrays once per week. In doing so, they will leave behind their fingerprints and the microorganisms that adhere to them every day when they grasp door handles or press light switches, for instance.

"After our young researchers have touched the touch arrays, they will wash and disinfect their hands," says Ralf Moller of the DLR Institute of Aerospace Medicine in Cologne. "The process has been precisely defined and the results are scientifically comparable with one another, just like the experiment that is taking place in parallel on board the ISS.'

In addition to the touch arrays, the test package for each school contains sticks for swabs, petri dishes and sampling vessels for DNA testing on microbial contamination. The samples will be evaluated in conjunction with the DLR_School_Labs. "The experiment provides the participants with insights into interdisciplinary research, as Touching Surfaces brings together biology, medicine, physics, chemistry and materials sciences," says Moller.

Copper, brass and steel have different effects on microorganisms
The metals of the touch arrays and their various surface textures have different effects on bacteria. For each metal, one of the surfaces is polished to a smooth finish, while the other two have fine patterns created using a laser. "The textured surfaces improve the effectiveness in terms of microbial inactivation, particularly in the case of copper," says Moller. Generally speaking, copper has antimicrobial properties and can render bacteria harmless. Brass is a mixture of copper and zinc, while steel serves as the reference metal.

Which bacteria adhere to which surfaces?
In the Touching Surfaces project, DLR has teamed up with institutions including Saarland University to study which microorganisms adhere to which surfaces. The researchers are also keen to determine whether there are any differences between the samples from the schools, the university hospital and the ISS, and what conclusions can be drawn from the findings.

Touching Surfaces is intended to increase the efficacy of antimicrobial surfaces designed for use in space and on Earth. Such surfaces are also important in combating infectious diseases; they can help kill antibiotic-resistant bacteria such as Methicillin-Resistant Staphylococcus Aureus (MRSA) or Vancomycin-Resistant Enterococci (VRE) in hospitals and ensure that pathogens cannot continue to spread via contact surfaces.

The project is part of the Cosmic Kiss mission of ESA astronaut Matthias Maurer, which launched to the ISS in early November 2021. Maurer and the other astronauts on board will also touch the touch arrays once per week, transferring the microorganisms from their hands to the surfaces in the process. The five touch arrays from the ISS will later be sent back to Earth for analysis at DLR.


Related Links
DLR Institute of Aerospace Medicine
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Being in space destroys more red blood cells
Ottawa, Canada (SPX) Jan 14, 2022
A world-first study has revealed how space travel can cause lower red blood cell counts, known as space anemia. Analysis of 14 astronauts showed their bodies destroyed 54 percent more red blood cells in space than they normally would on Earth, according to a study published in Nature Medicine. "Space anemia has consistently been reported when astronauts returned to Earth since the first space missions, but we didn't know why," said lead author Dr. Guy Trudel, a rehabilitation physician and researc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Mapping the photosynthetic properties of the fastest growing alga in the world

Scientists build bioreactors and engineer bacteria to advance biofuel research

Creating sustainable material from waste

Air France-KLM adds biofuel surcharge to plane tickets

SPACE MEDICINE
RACER revs up for checkered flag goal of high-speed, off-road autonomy

Carnegie Mellon-led team to develop robotics to service satellites and build structures

Bone growth inspired "microrobots" that can create their own bone

How robots learn to hike

SPACE MEDICINE
Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

'Ocean battery' targets renewable energy dilemma

SPACE MEDICINE
In Texas, driverless trucks are set to take over roads

'Game changer' e-moped batteries spread from Taiwan across Asia

California warns of possible oversight of Tesla tests

Swiss slam brakes on subsidies for 'con' hybrid cars

SPACE MEDICINE
Form fit: Device wraps around hot surfaces, turns wasted heat to electricity

Serbia backs out of controversial Rio Tinto lithium mine: PM

Encapsulation as a method for preventing degradation in Li-air batteries

Common household cleaner can boost effort to harvest fusion energy on Earth

SPACE MEDICINE
Iran says in talks with Russia to build nuclear power units

Sweden probes drone flights over nuclear plants

Austria gears up to fight EU 'green' nuclear energy plan

France's EDF shares sink as production, price woes mount

SPACE MEDICINE
EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

World risks more years of high energy prices, emissions: IEA

Idaho researchers unveil enhanced electric power grid test bed

SPACE MEDICINE
Land battle awaits Indigenous communities over Indonesia capital relocation: NGO

Just what is a 'resilient' forest, anyway?

US announces historic $1.1 bn investment for Everglades rehabilitation

Penn State gets grant to teach private forest owners to adapt to climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.