Solar Energy News  
ROCKET SCIENCE
First results show success for second NASA SLS booster test
by Staff Writers
Promontory UT (SPX) Aug 15, 2016


Orbital ATK engineers begin disassembling the booster aft exit cone. Each segment of the booster will be taken apart and undergo a detailed inspection to support verification that the booster design meets SLS requirements. NASA and Orbital ATK also use the inspection to ensure the booster performed as expected during its second qualification ground test, which was successfully completed June 28 at Orbital ATK's test facilities. Image courtesy OATK. For a larger version of this image please go here.

For two heart-pumping minutes, the booster for NASA's new rocket, the Space Launch System, demonstrated its power and operated as planned at nearly 6,000 degrees Fahrenheit during a successful qualification test June 28 at Orbital ATK's test facilities in Promontory, Utah.

The smoke has well cleared from that test, but critical data continues to pour in, which will help NASA qualify the booster for the first, uncrewed flight of SLS with the Orion spacecraft in 2018 - a key milestone on the agency's journey to Mars.

"Preliminary analysis from the test shows the instrumentation performed extremely well and gathered the critical data needed to show that we met our test objectives," said Mat Bevill, deputy chief engineer for the SLS Boosters Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS program is managed for the agency.

During the test, 82 qualification test objectives were measured through more than 530 instrumentation channels on the booster at a cold motor conditioning target of 40 degrees Fahrenheit - which is the colder end of its accepted propellant temperature range.

This is the second qualification ground test for the booster, as the first was successfully completed in March 2015. This is the fifth, full-scale motor test overall for the booster, which includes three development tests.

The first qualification ground test demonstrated acceptable performance of the booster design at 90 degrees Fahrenheit - the highest end of the booster's accepted propellant temperature range. Testing at the thermal extremes experienced by the booster on the launch pad is important to understanding the effect of temperature on how the propellant burns.

"We still have many months to go to analyze all the data from the second test, as it's a very detailed process," Bevill said. That process includes disassembling the 154-foot-long booster and getting a thorough look at every part of it. The detailed inspection, including the post-test measurements, will support verification that the booster design meets SLS requirements and performed as expected on test day. Engineers also will compare data from the previous four ground tests.

Once all analysis is complete, the boosters will still have a few steps to go before being ready for the launch pad, including design certification review. That review will determine if the design for all parts of the booster are certified for flight. In 2015, the SLS Program completed its critical design review - a first in almost 40 years for a NASA human-rated rocket.

"This is a critical and exciting time for our teams as we prepare the boosters for flight and move forward on the journey to Mars," said Alex Priskos, manager of the SLS Boosters Office. "Booster flight hardware for our first flight, Exploration Mission-1, is in full production, with four segments being cast and a fifth going to casting later this month at Orbital ATK. We also have aft skirt refurbishment work taking place at Kennedy Space Center, where the boosters will be stacked ahead of the flight." Orbital ATK, headquartered in Dulles, Virginia, is prime contractor for the SLS boosters.

When completed, two five-segment boosters and four RS-25 main engines will power the SLS on deep space missions. The solid rocket boosters operate in parallel with the main engines for the first two minutes of flight. They provide more than 75 percent of the thrust needed for the rocket to escape the gravitational pull of Earth.

The initial SLS configuration will have a minimum 70-metric-ton (77-ton) lift capability. The next planned upgrade of SLS will use a powerful exploration upper stage for more ambitious missions with a 105-metric-ton (115-ton) lift capacity. In each configuration, SLS will continue to use the same core stage and four RS-25 engines.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Space Launch System
Rocket Science News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROCKET SCIENCE
Watch a tiny space rocket work
Houghton MI (SPX) Aug 10, 2016
Researchers at the University of Maryland and Michigan Technological University have operated a tiny proposed satellite ion rocket under a microscope to see how it works. The rocket, called an electrospray thruster, is a drop of molten salt. When electricity is applied, it creates a field on the tip of the droplet, until ions begin streaming off the end. The force created by the rocket is ... read more


ROCKET SCIENCE
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

ROCKET SCIENCE
China's Midea grabs near-95% stake in German firm Kuka

CSRA explores human-machine interaction for Air Force

New robot overcomes obstacles

First wave-propelled robot swims, crawls and climbs using a single, small motor

ROCKET SCIENCE
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

ROCKET SCIENCE
New Zealand offers electric vehicle stimulus

US finds evidence of criminality in VW probe: report

China auto sales surge 23% in July: industry group

NREL assesses strategies needed for light-duty vehicle greenhouse gas reduction

ROCKET SCIENCE
Making nail polish while powering fuel cells

Stanford-led team reveals nanoscale secrets of rechargeable batteries

Simulating complex catalysts key to making cheap, powerful fuel cells

Lithium-ion batteries: Capacity might be increased by 6 times

ROCKET SCIENCE
Nuclear Inspection Benefits from New Generation Sensor Lens

South Korea Relaunches Wolsong NPP's Reactor After Fixing Technical Problem

Japan reactor restarts in post-Fukushima nuclear push

Bulgaria seeks private money for nuclear plant

ROCKET SCIENCE
Low sales prices hit Czech power giant CEZ in H1

New MIT system can identify how much power is being used by each device in a household

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

ROCKET SCIENCE
A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

Early snowmelt reduces forests' atmospheric CO2 uptake









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.