. Solar Energy News .




.
CHIP TECH
Flexible electronics hold promise for consumer applications
by Staff Writers
Winston-Salem NC (SPX) Aug 30, 2011

Prior researchers predicted that larger carbon frameworks would have properties superior to their smaller counterparts, but until now there has not been an effective route to make these larger frameworks stable and soluble enough for study.

New research from Wake Forest University has advanced the field of plastic-based flexible electronics by developing, for the first time, an extremely large molecule that is stable, possesses excellent electrical properties, and inexpensive to produce.

The technology, developed by Oana Jurchescu, assistant professor of physics at Wake Forest, her graduate students Katelyn Goetz and Jeremy Ward, and interdisciplinary collaborators from Stanford University, Imperial College (London), University of Kentucky and Appalachian State University, eventually may turn scientific wonders - including artificial skin, smart bandages, flexible displays, smart windshields, wearable electronics and electronic wallpapers - into everyday realities.

Jurchescu says plastic or organic semiconductors, produced in large volume using roll-to-roll processing, inkjet printing or spray deposition, represent the "electronics everywhere" trend of the future.

In the current consumer market, however, the word "electronic" is generally associated with the word "expensive." This is largely because products such as televisions, computers and cell phones are based on silicon, which is costly to produce.

Organic electronics, however, build on carbon-based (plastic) materials, which offer not only ease of manufacturing and low cost, but also lightweight and mechanical flexibility, says Jurchescu.

The team recently published its manuscript in Advanced Materials, one of the most prestigious journals in the field of materials research.

Prior researchers predicted that larger carbon frameworks would have properties superior to their smaller counterparts, but until now there has not been an effective route to make these larger frameworks stable and soluble enough for study.

"To accelerate the use of these technologies, we need to improve our understanding of how they work," Jurchescu says.

"The devices we study (field-effect transistors) are the fundamental building blocks in all modern-based electronics. Our findings shed light on the effect of the structure of the molecules on their electrical performance, and pave the way towards a design of improved materials for high-performance, low-cost, plastic-based electronics."

Jurchescu's lab is part of the physics department and the Center for Nanotechnology and Molecular Materials.

The team studied new organic semiconductor materials amenable to transistor applications and explored their structure-property relationships.

Organic semiconductors are a type of plastic material characterized by a specific structure that makes them conductive. In modern electronics, a circuit uses transistors to control the current between various regions of the circuit.

The results of the published research may lead to significant technological improvements as the performance of the transistor determines the switching speed, contrast details, and other key properties of the display.




Related Links
Wake Forest University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Berkeley Lab scientists unveil an X-ray technique called HARPES
Berkeley CA (SPX) Aug 26, 2011
The expression "beauty's only skin-deep" has often been applied to the chemistry of materials because so much action takes place at the surface. However, for many of the materials in today's high technologies, such as semiconductors and superconductors, once a device is fabricated it is the electronic structures below the surface, in the bulk of the material or in buried layers, that determine i ... read more


CHIP TECH
Panda poop may be a treasure trove of microbes for making biofuels

Oceans of energy to power a planetary civilization

Testing the water for bioenergy crops

Making Tomorrow's Bioenergy Yeasts Strong

CHIP TECH
Sandia Labs' Gemini-Scout robot likely to reach trapped miners ahead of rescuers

Rehab robots lend stroke patients a hand

Wearable device that vibrates fingertip could improve sense of touch

Bionic microrobot mimics the 'water strider' and walks on water

CHIP TECH
Researchers build a tougher, lighter wind turbine blade

Wind Power Now Less Expensive Than Natural Gas In Brazil

BMW to power Leipzig factory by wind energy

Chinese turbine maker enters Irish project

CHIP TECH
Germany gets 1st EV fast-charging station

China's SAIC Motor first-half net profit up 46%

China's BYD to raise up to $939 mn in bond sale

Can electric cars win over the mass market?

CHIP TECH
China blocks Europe moves to free money for Libya: envoys

Sinopec first-half net profit rises 12%

Philippine leader flies to China

Breakthrough in hydrogen fuel cells

CHIP TECH
Miner Xstrata faces climate test case in Australiaq

Honeycomb Carbon Crystals Possibly Detected in Space

Has Graphene Been Detected in Space

Pioneers get close-up view of miracle material graphene

CHIP TECH
Japan to lift power-saving decree earlier than planned

Romanian official quits after carbon market suspension

Kyoto team suspends Romania from carbon market

Japan enacts key bills, clears way for Kan to go

CHIP TECH
Argentina, Uruguay end pulp mill row

Reforestation and Lions in Greece

Cambodian 'Avatars' rally to save forest

Increased tropical forest growth could release carbon from the soil


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement