Solar Energy News  
TECH SPACE
Fluorescent holography: Upending the world of biological imaging
by Staff Writers
Fort Collins CO (SPX) Oct 27, 2016


Spatiotemporal modulations of illumination intensity in the CHIRPT microscope are achieved by imaging a spinning modulation mask to the focal plane of the microscope. A spatial filter placed in the pupil plane of the objective lens allows illumination intensity to form by the interference of two beams in the object plane. The microscope and illumination intensity are shown here at a snapshot in time. Image courtesy Jeff Field/Colorado State University. For a larger version of this image please go here.

Optical microscopy experts at Colorado State University are once again pushing the envelope of biological imaging. Jeffrey Field, a research scientist in electrical engineering and director of CSU's Microscope Imaging Network, has designed and built a fluorescence-detection microscope that combines three-dimensional and high-resolution image processing that's also faster than comparable techniques.

The work, with co-authorship by Randy Bartels, professor of electrical and computer engineering, and former postdoctoral researcher David Winters, has been published in Optica, the journal of the Optical Society of America. They named their new microscope CHIRPT: Coherent Holographic Image Reconstruction by Phase Transfer.

Field and other optics scientists work in a world of tradeoffs. For example: an advanced deep-tissue imaging technique called multiphoton fluorescence microscopy employs a short, bright laser pulse focused tight to one spot, and the fluorescence intensity from that one spot is recorded. Then, the laser moves to the next spot, then the next, to build up high-resolution 3D images. The technique offers subcellular detail, but it's relatively slow because it illuminates only one tiny spot at a time.

Other techniques, like spinning disk confocal microscopy, are faster because they shine light on multiple spots, not just one, and they scan simultaneously over a larger area. But unlike multiphoton, these techniques require collecting an image with a camera. As a result, fluorescent light emitted from the specimen is blurred on the camera, leading to loss in resolution, and with it, subcellular detail.

Call them greedy, but Field and colleagues want it all.

Their goal is working around each of these limitations - speed, resolution, size of field - to break through established boundaries in light microscopy.

Field and Bartels' new microscope builds upon a previously published technique, and permits digital re-focus of fluorescent light. It illuminates not one point, but multiple points by harnessing delocalized illumination spread over a large area. The physical principles they are using are similar to holography, in which scattered light is used to build a 3-D image.

Using a large illumination field, followed by back-end signal processing, the microscope can define distinct light modulation patterns of many points within the field of view. It builds up a 3-D image by combining the signals from all those distinct patterns.

"The idea is that you have a fluorophore at any point in the specimen, and the temporal structure of its fluorescence will be distinguishable from all others," Field said. "So you can have this huge array of fluorophores, and just with this single-pixel detector, you can tell where every one of them is in that 2D field."

So what does this new technique allow? Deep-tissue images in three dimensions, with better depth of field than comparable techniques. Depth of field, like in photography, means background images are in sharp focus along with the main image. And the CSU researchers can work at 600 frames per second, which is many times faster than established techniques.

With their new microscope, images can also be post-processed to remove aberrations that obscure the object of interest. It's akin to being able to focus a picture after it's been taken.

The CHIRPT microscope could allow biomedical researchers to produce sharp, 3-D images of cells or tissue over a much larger volume than conventional fluorescence microscopy methods allow. It could lead to things like imaging multicellular processes in real time that, with a conventional light microscope, could only be seen one cell at a time.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Colorado State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Move over, lasers: Scientists can now create holograms from neutrons, too
Washington DC (SPX) Oct 25, 2016
For the first time, a team including scientists from the National Institute of Standards and Technology (NIST) have used neutron beams to create holograms of large solid objects, revealing details about their interiors in ways that ordinary laser light-based visual holograms cannot. Holograms - flat images that change depending on the viewer's perspective, giving the sense that they are th ... read more


TECH SPACE
Turning biofuel waste into wealth in a single step

State partnerships can promote increased bio-energy production, reduce emissions

Biomass heating could get a 'green' boost with the help of fungi

Algae discovery offers potential for sustainable biofuels

TECH SPACE
Robotic tutors for primary school children

Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

Robotic cleaning technique could automate neuroscience research

Scientists simplify model for human behavior in automation

TECH SPACE
OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

California eyes wind, wave potential

TECH SPACE
Long-vanished German car brand joins electric race

IBM Watson machine smarts hitch a ride with GM cars

Chinese ride-share king Didi Chuxing could go global

US judge approves massive VW emissions settlement

TECH SPACE
Inspiration from the ocean

Fixing deficits in boundary plasma models

First results of NSTX-U research operations

Scientists find static 'stripes' of electrical charge in copper-oxide superconductor

TECH SPACE
Bulgaria to pay Russia 600 mn euros for dropped nuclear plant

Greenland uranium mining opponents join government

Germany approves controversial nuclear waste deal

Anti-nuclear politician's win hurts Japan atomic push

TECH SPACE
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

TECH SPACE
New warning over spread of ash dieback

Brazil land grab threatens isolated tribes: activists

The fight against deforestation: Why are Congolese farmers clearing forest?

Deforestation in Amazon going undetected by Brazilian monitors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.