Solar Energy News  
EARLY EARTH
Fossil of oldest known land-dweller identified
by Staff Writers
Cambridge, UK (SPX) Mar 04, 2016


Three filaments of Tortotubus from Gotland, Sweden, showing growth of secondary branches along main filament. Transmitted Light Micrograph. Image courtesy Martin R. Smith. For a larger version of this image please go here.

A fossil dating from 440 million years ago is not only the oldest example of a fossilised fungus, but is also the oldest fossil of any land-dwelling organism yet found. The organism, and others like it, played a key role in laying the groundwork for more complex plants, and later animals, to exist on land by kick-starting the process of rot and soil formation, which is vital to all life on land.

This early pioneer, known as Tortotubus, displays a structure similar to one found in some modern fungi, which likely enabled it to store and transport nutrients through the process of decomposition. Although it cannot be said to be the first organism to have lived on land, it is the oldest fossil of a terrestrial organism yet found. The results are published in the Botanical Journal of the Linnean Society.

"During the period when this organism existed, life was almost entirely restricted to the oceans: nothing more complex than simple mossy and lichen-like plants had yet evolved on the land," said the paper's author Dr Martin Smith, who conducted the work while at the University of Cambridge's Department of Earth Sciences, and is now based at Durham University. "But before there could be flowering plants or trees, or the animals that depend on them, the processes of rot and soil formation needed to be established."

Working with a range of tiny microfossils from Sweden and Scotland, each shorter than a human hair is wide, Smith attempted to reconstruct the method of growth for two different types of fossils that were first identified in the 1980s.

These fossils had once been thought to represent parts of two different organisms, but by identifying other fossils with 'in-between' forms, Smith was able to show that the fossils actually represented parts of a single organism at different stages of growth. By reconstructing how the organism grew, he was able to show that the fossils represent mycelium - the root-like filaments that fungi use to extract nutrients from soil.

It's difficult to pinpoint exactly when life first migrated from the seas to the land, since useful features in the fossil record that could help identify the earliest land colonisers are rare, but it is generally agreed that the transition started early in the Palaeozoic era, between 500 and 450 million years ago.

But before any complex forms of life could live on land, there needed to be nutrients there to support them. Fungi played a key role in the move to land, since by kick-starting the rotting process, a layer of fertile soil could eventually be built up, enabling plants with root systems to establish themselves, which in turn could support animal life.

Fungi play a vital role in the nitrogen cycle, in which nitrates in the soil are taken up by plant roots and passed along food chain into animals. Decomposing fungi convert nitrogen-containing compounds in plant and animal waste and remains back into nitrates, which are incorporated into the soil and can again be taken up by plants. These early fungi started the process by getting nitrogen and oxygen into the soil.

Smith found that Tortotubus had a cord-like structure, similar to that of some modern fungi, in which the main filament sends out primary and secondary branches that stick back onto the main filament, eventually enveloping it.

This cord-like structure is often seen in land-based organisms, allowing them to spread out and colonise surfaces. In modern fungi, the structure is associated with the decomposition of matter, allowing a fungus colony to move nutrients to where they are needed - a useful adaptation in an environment where nutrients are scarce and unevenly distributed.

In contrast with early plants, which lacked roots and therefore had limited interaction with activity beneath the surface, fungi played an important role in stabilising sediment, encouraging weathering and forming soils.

"What we see in this fossil is complex fungal 'behaviour' in some of the earliest terrestrial ecosystems - contributing to soil formation and kick-starting the process of rotting on land," said Smith. A question, however, is what was there for Tortotubus to decompose. According to Smith, it's likely that there were bacteria or algae on land during this period, but these organisms are rarely found as fossils.

Additionally, the pattern of growth in Tortotubus echoes that of the mushroom-forming fungi, although unambiguous evidence of mushrooms has yet to be found in the Palaeozoic fossil record.

"This fossil provides a hint that mushroom-forming fungi may have colonised the land before the first animals left the oceans," said Smith. "It fills an important gap in the evolution of life on land."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Extinct otter-like 'marine bear' might have had a bite like a saber-toothed cat
New York NY (SPX) Mar 02, 2016
New research suggests that the feeding strategy of Kolponomos, an enigmatic shell-crushing marine predator that lived about 20 million years ago, was strangely similar to a very different kind of carnivore: the saber-toothed cat Smilodon. Scientists at the American Museum of Natural History used high-resolution x-ray imaging and computerized biting simulations to show that even though the ... read more


EARLY EARTH
Biofuels from algae: A budding technology yet to become viable

Researchers' new advance in quest for second generation biofuels

Improving biorefineries with bubbles

Study: Bubbles boost efficiency of biorefinery systems

EARLY EARTH
Help NASA Create Better Vision for Robonaut

Boston Dynamics robot learns from being bullied

X Prize aims to show AI is friend not foe

Can fables, fairy tales teach robots morality?

EARLY EARTH
Adwen Chooses Sentient Science For Computational Gearbox Testing

EU boasts of strides in renewable energy

Offshore U.K. to host world's largest wind farm

Germany aims to build wind energy reputation

EARLY EARTH
US questions Mercedes-Benz on diesel car emissions

Peugeot Citroen reveals 'real-world' fuel consumption

Google takes some blame in self-driving car bang-up

US judge gives VW a month to present diesel fix plan

EARLY EARTH
Electric Car War Sends Lithium Prices Sky High

Creation of Jupiter interior, a step towards room temp superconductivity

Quantum phase transition underpins superconductivity in copper oxides

New material to enhance battery life

EARLY EARTH
Glitch halts Japan reactor days after restart: utility

Fukushima Disaster Shows Need to Continue Improving NPP Safety Measures

India to allocate $440M annually for nuclear power investments

Nuclear Waste Illegally Dumped in Kentucky Landfill

EARLY EARTH
Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

The forecast for renewable energy in 2016

US, Canada and Mexico sign clean energy pact

EARLY EARTH
Green groups urge DR Congo to keep forest moratorium

New insights into the seasonality of Amazon's evergreen forests

Synchronized leaf aging in the Amazon responsible for seasonal increases in photosynthesis

NASA, Partner Space Agencies Measure Forests In Gabon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.