Solar Energy News  
TECH SPACE
From ancient fossils to future cars
by Staff Writers
Riverside CA (SPX) Oct 25, 2016


Electron microscopy showing one of the unique geometries observed in the nano-silicon power derived from diatomaceous earth. Image courtesy UC Riverside.

Researchers at the University of California, Riverside's Bourns College of Engineering have developed an inexpensive, energy-efficient way to create silicon-based anodes for lithium-ion batteries from the fossilized remains of single-celled algae called diatoms. The research could lead to the development of ultra-high capacity lithium-ion batteries for electric vehicles and portable electronics.

Titled "Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode," a paper describing the research was published recently in the journal Scientific Reports. The research was led by Mihri Ozkan, professor of electrical engineering, and Cengiz Ozkan, professor of mechanical engineering. Brennan Campbell, a graduate student in materials science and engineering, was first author on the paper.

Lithium-ion batteries, the most popular rechargeable batteries in electric vehicles and personal electronics, have several major components including an anode, a cathode, and an electrolyte made of lithium salt dissolved in an organic solvent.

While graphite is the material of choice for most anodes, its performance is a limiting factor in making better batteries and expanding their applications. Silicon, which can store about 10 times more energy, is being developed as an alternative anode material, but its production through the traditional method, called carbothermic reduction is expensive and energy-intensive.

To change that, the UCR team turned to a cheap source of silicon - diatomaceous earth (DE) - and a more efficient chemical process. DE is an abundant, silicon-rich sedimentary rock that is composed of the fossilized remains of diatoms deposited over millions of years. Using a process called magnesiothermic reduction, the group converted this low-cost source of Silicon Dioxide (SiO2) to pure silicon nano-particles.

"A significant finding in our research was the preservation of the diatom cell walls - structures known as frustules - creating a highly porous anode that allows easy access for the electrolyte", Cengiz Ozkan said.

This research is the latest in a series of projects led by Mihri and Cengiz Ozkan to create lithium-ion battery anodes from environmentally friendly materials. Previous research has focused on developing and testing anodes from portabella mushrooms and beach sand.

"Batteries that power electric vehicles are expensive and need to be charged frequently, which causes anxiety for consumers and negatively impacts the sale of these vehicles. To improve the adoption of electric vehicles, we need much better batteries. We believe diatomaceous earth, which is abundant and inexpensive, could be another sustainable source of silicon for battery anodes," Mihri Ozkan said.

In addition to Mihri and Cengiz Ozkan and Campbell, graduate students Robert Ionescu, Maxwell Tolchin, Kazi Ahmed, Zachary Favors, and Krassimir N. Bozhilov, manager of UCR's Central Facility for Advanced Microscopy and Microanalysis, also contributed to this research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
How water flows near the superhydrophobic surface
Moscow, Russia (SPX) Oct 24, 2016
Water (and other liquids) has an unusual property when it flows closely to some specially designed surfaces: its speed isn't equal to zero even in the layer that directly touches the wall. This means that liquid doesn't adhere to the surface, but instead slides along it. Such an effect is called hydrodynamic slip and it was first described more than 200 years ago. However, at that time it hasn't ... read more


TECH SPACE
Algae discovery offers potential for sustainable biofuels

'Super yeast' has the power to improve economics of biofuels

Unraveling the science behind biomass breakdown

The road to green hydrogen runs through mazes in algal proteins

TECH SPACE
Computers should be named on patents as inventors, for creativity to flourish

Soft robots that mimic human muscles

Anyone can chat with the White House... through a bot

Robot customs officers debut in South China ports

TECH SPACE
OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

California eyes wind, wave potential

TECH SPACE
US judge 'strongly inclined' to back $15 bn VW settlement

Driverless taxi hits lorry in Singapore trial

Sweden wants EU to switch to emission-free cars by 2030

Honda to build new China factory

TECH SPACE
Tesla, Apple and Uber push lithium prices even higher

A window into battery life for next-gen lithium cells

One-time pollutant may become valued product to aid wind, solar energy

A new spin on superconductivity

TECH SPACE
Germany approves controversial nuclear waste deal

Anti-nuclear politician's win hurts Japan atomic push

Japan nuclear reactor shuttered for safety work

South Africa's nuclear programme kicked into touch, again

TECH SPACE
UNESCO urges Bangladesh to scrap Sundarbans plant

Australian consortium buys power grid after Chinese bid blocked

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

TECH SPACE
Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests

Urban warming slows tree growth, photosynthesis

Emissions from logging debris in Africa may be vastly under estimated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.